Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Chem Biodivers ; : e202401034, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109873

RESUMO

The main protease (Mpro) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2) represents a promising target for antiviral drugs aimed at combating COVID-19. Consequently, the development of Mpro inhibitor  is an ideal strategy for combating the virus. In this study, we identified twenty-two dithiocarbamates (1a-h), dithiocarbamate-Cu(II) complexes (2a-hCu) and disulfide derivatives (2a-e, 2i) as potent inhibitors of Mpro, with IC50 value range of 0.09-0.72, 0.9-24.7 and 15.1-111 µM, respectively, through FRET screening. The enzyme kinetics, inhibition mode, jump dilution, and DTT assay revealed that 1g may be a partial reversible inhibitor, while 2d and 2f-Cu are the irreversible and dose- and time-dependent inhibitors, potentially covalently binding to the target. Binding of 2d, 2f-Cu and 1g to Mpro was found to decrease the stability of the protein. Additionally, DTT assays and thermal shift assays indicated that 2f-Cu and 2d are the nonspecific and promiscuous cysteine protease inhibitor. ICP-MS implied that the inhibitory activity of 2f-Cu may stem from the uptake of Cu(II) by the enzyme. Cytotoxicity assays demonstrated that 2d and 1g exhibit low cytotoxicity, whereas 2f-Cu show certain cytotoxicity in L929 cells. Overall, this work presents two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.

2.
Eur J Med Chem ; 265: 116055, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134748

RESUMO

The bacterial infection mediated by ß-lactamases MßLs and SßLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MßLs and SßLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MßLs (NDM-1, IMP-1) and SßLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64-41.08 and 1.01-41.91 µM (except 1a and 1d on SßLs, IC50 > 50 µM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64-1.32 and 0.57-1.01 µM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 µM, is a time- and dose-dependent inhibitor of both MßLs and SßLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b-d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a-c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b-c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MßLs and E. coli-SßLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MßLs and MßLs, in combating antibiotic-resistant bacteria.


Assuntos
Serina , beta-Lactamases , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Escherichia coli , Testes de Sensibilidade Microbiana , Serina/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia
3.
Int J Biol Macromol ; 252: 126441, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607651

RESUMO

Metallo-carbapenemases-mediated carbapenem-resistant Enterobacterales (CREs) has been acknowledged as "urgent threat" by the World Health Organization. The discovery of new strategies that block metallo-carbapenemases activity to reverse carbapenem resistance is an urgent need. In this study, a coumarin copper complex containing a PEG linker and glucose ligand, GluC-Cu, was used to reverse carbapenem resistance. Interestingly, it could effectively inhibit metallo-carbapenemases (NDM-1, IMP-1 and ImiS) with an IC50 value in the range of 0.23-1.21 µM, and simultaneously release the green fluorescence signal (GluC), therefore exhibiting self-reported inhibition performance. The inhibition mechanism of oxidizing Zn(II) thiolate site of NDM-1 from Cu2+ to Cu+ was verified by fluorescence assay, HR-MS, and XPS. Moreover, GluC-Cu in combination with meropenem showed excellent synergistic antibacterial effect to effectively combat E. coli expressing metallo-carbapenemases in vitro and in a mice infection model. This bifunctional metallo-carbapenemases inhibitor provides a novel chemical tool to overcome carbapenem resistance.


Assuntos
Cobre , Escherichia coli , Humanos , Animais , Camundongos , Autorrelato , Cobre/farmacologia , Antibacterianos/farmacologia , beta-Lactamases , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
4.
Chem Commun (Camb) ; 59(60): 9227-9230, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37417329

RESUMO

The continuous emergence of multi-drug resistant pathogens co-expressing serine and metallo-carbapenemases seriously threatens the efficacy of carbapenem. Here, we report the first SeCN-derived dual inhibitor of serine and metallo-carbapenemases with IC50 values ranging from 0.0038 to 1.27 µg mL-1. The inhibitor was shown to form covalent bonds with Cys221 of NDM-1 and Ser70 of KPC-2, respectively, achieving selective labelling and cross-class inhibition for carbapenemases. Our results provide a potential strategy to develop clinically useful dual inhibitors targeting serine and metallo-carbapenemases to combat superbugs.


Assuntos
Antibacterianos , Proteínas de Bactérias , Antibacterianos/química , beta-Lactamases/química , Carbapenêmicos , Testes de Sensibilidade Microbiana
5.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431786

RESUMO

Multidrug-resistant bacterial infections mediated by metallo-ß-lactamases (MßLs) have grown into an emergent health threat, and development of novel antimicrobials is an ideal strategy to combat the infections. Herein, a novel vancomycin derivative Vb was constructed by conjugation of triazolylthioacetamide and vancomycin molecules, characterized by reverse-phase high performance liquid chromatography (HPLC) and confirmed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The biological assays revealed that Vb effectively inhibited S. aureus and methicillin-resistant S. aureus (MRSA), gradually increased the antimicrobial effect of ß-lactam antibiotics (cefazolin, meropenem and penicillin G) and exhibited a dose-dependent synergistic antibacterial effect against eight resistant strains tested, which was confirmed by the time-kill curves determination. Most importantly, Vb increased the antimicrobial effect of meropenem against the clinical isolates EC08 and EC10 and E. coli producing ImiS and CcrA, resulting in a 4- and 8-fold reduction in MIC values, respectively, at a dose up to 32 µg/mL. This work offers a promising scaffold for the development of MßLs inhibitors, specifically antimicrobials for clinically drug-resistant isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Vancomicina , Vancomicina/farmacologia , Staphylococcus aureus , beta-Lactamases , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Escherichia coli , Bactérias
6.
ACS Omega ; 7(34): 29909-29922, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36061679

RESUMO

The overuse of antibiotics exacerbates the development of antibiotic-resistant bacteria, threatening global public health, while most traditional antibiotics act on specific targets and sterilize through chemical modes. Therefore, it is a desperate need to design novel therapeutics or extraordinary strategies to overcome resistant bacteria. Herein, we report a positively charged nanocomposite PNs-Cur with a hydrodynamic diameter of 289.6 nm, which was fabricated by ring-opening polymerization of ε-caprolactone and Z-Lys-N-carboxyanhydrides (NCAs), and then natural curcumin was loaded onto the PCL core of PNs with a nanostructure through self-assembly, identified through UV-vis, and characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Especially, the self-assembly dynamics of PNs was simulated through molecular modeling to confirm the formation of a core-shell nanostructure. Biological assays revealed that PNs-Cur possessed broad-spectrum and efficient antibacterial activities against both Gram-positive and Gram-negative bacteria, including drug-resistant clinical bacteria and fungus, with MIC values in the range of 8-32 µg/mL. Also, in vivo evaluation showed that PNs-Cur exhibited strong antibacterial activities in infected mice. Importantly, the nanocomposite did not indeed induce the emergence of drug-resistant bacterial strains even after 21 passages, especially showing low toxicity regardless of in vivo or in vitro. The study of the antibacterial mechanism indicated that PNs-Cur could indeed destruct membrane potential, change the membrane potential, and cause the leakage of the cytoplasm. Concurrently, the released curcumin further plays a bactericidal role, eventually leading to bacterial irreversible apoptosis. This unique bacterial mode that PNs-Cur possesses may be the reason why it is not easy to make the bacteria susceptible to easily produce drug resistance. Overall, the constructed PNs-Cur is a promising antibacterial material, which provides a novel strategy to develop efficient antibacterial materials and combat increasingly prevalent bacterial infections.

7.
Bioorg Chem ; 128: 106048, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952448

RESUMO

Metallo-ß-lactamases (MßLs) hydrolyze almost all ß-lactam antibiotics, including last-resort carbapenems, and is emerging as a global antibiotic resistance threat. Discovering novel fluorescent molecules for visualizing MßLs has proved challenging. Herein, based on covalent and Zn(II)-binding scaffold of MßLs inhibitor, we designed and synthesized a novel series of environment-sensitive fluorescent probes ESA, DHA and DHS, to detect and inhibit the enzymatic activity of MßLs. Of these probes, ESA is a highly active NDM-1 inhibitor (IC50 = 81 nM), which exhibited excellent turn-on fluorescent properties to effectively distinguish NDM-1 (B1), ImiS (B2) and L1 (B3) in vitro. Cell imaging indicated that ESA can label and track the distribution process of the intracellular protein NDM-1 in living cells. Molecular docking further elucidated the environment-sensitive fluorescent response nature of ESA to the NDM-1. Significantly, ESA showed excellent synergistic antibacterial effect, combined with meropenem, to overcome NDM-1-mediated drug-resistant pathogens.


Assuntos
Corantes Fluorescentes , beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Carbapenêmicos , Corantes Fluorescentes/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , beta-Lactamases/metabolismo
8.
Bioorg Chem ; 126: 105910, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35653899

RESUMO

The irregular use of antibiotics has created a natural selection pressure for bacteria to adapt resistance. Bacterial resistance caused by metallo-ß-lactamases (MßLs) has been the most prevalent in terms of posing a threat to human health. The New Delhi metallo-ß-lactamase-1 (NDM-1) has been shown to be capable of hydrolyzing almost all ß-lactams. In this work, eight aromatic Schiff bases 1-8 were prepared and identified by enzyme kinetic assays to be the potent inhibitors of NDM-1 (except 4). These molecules exhibited a more than 95 % inhibition, and an IC50 value in the range of 0.13-19 µM on the target enzyme, and 3 was found to be the most effective inhibitor (IC50 = 130 nM). Analysis of structure-activity relationship revealed that the o-hydroxy phenyl improved the inhibitory activity of Schiff bases on NDM-1. The inhibition mode assays including isothermal titration calorimetry (ITC) disclosed that both compounds 3 and 5 exhibited a reversibly mixed inhibition on NDM-1, with a Ki value of 1.9 and 10.8 µM, respectively. Antibacterial activity tests indicated that a dose of 64 µg·mL-1 Schiff bases resulted in 2-128-fold reduction in MICs of cefazolin on E. coli producing NDM-1 (except 4). Cytotoxicity assays showed that both Schiff bases 3 and 5 have low cytotoxicity on the mouse fibroblast (L929) cells at a concentration of up to 400 µM. Docking studies suggested that the hydroxyl group interacts with Gln123 and Glu152 of NDM-1, and the amino groups interact with the backbone amide groups of Glu152 and Asp223. This study provided a novel scaffold for the development of NDM-1 inhibitors.


Assuntos
Escherichia coli , Bases de Schiff , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Camundongos , Testes de Sensibilidade Microbiana , Bases de Schiff/farmacologia , beta-Lactamases/química
9.
Bioorg Chem ; 127: 105928, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35717802

RESUMO

The superbug infection mediated by metallo-ß-lactamases (MßLs) has grown into anemergent health threat, and development of MßL inhibitors is an ideal strategy to combat the infection. In this work, twenty-five thiosemicarbazones 1a-e, 2a-e, 3a-e, 4a-d, 5a-d and 6a-b were synthesized and assayed against MßLs ImiS, NDM-1 and L1. The gained molecules specifically inhibited NDM-1 and ImiS, exhibiting an IC50 value in the range of 0.37-21.35 and 0.45-8.76 µM, and 2a was found to be the best inhibitor, with an IC50 of 0.37 and 0.45 µM, respectively, using meropenem (MER) as substrate. Enzyme kinetics and dialysis tests revealed and confirmed by ITC that 2a is a time-and dose-dependent inhibitor of ImiS and NDM-1, it competitively and reversibly inhibited ImiS with a Ki value of 0.29 µM, but irreversibly inhibited NDM-1. Structure-activity relationship disclosed that the substitute dihydroxylbenzene significantly enhanced inhibitory activity of thiosemicarbazones on ImiS and NDM-1. Most importantly, 1a-e, 2a-e and 3a-b alone more strongly sterilized E. coli-ImiS and E. coli-NDM-1 than the MER, displaying a MIC value in the range of 8-128 µg/mL, and 2a was found to be the best reagent with a MIC of 8 and 32 µg/mL. Also, 2a alone strongly sterilized the clinical isolates EC01, EC06-EC08, EC24 and K. pneumonia-KPC-NDM, showing a MIC value in the range of 16-128 µg/mL, and exhibited synergistic inhibition with MER on these bacteria tested, resulting in 8-32-fold reduction in MIC of MER. SEM images shown that the bacteria E. coli-ImiS, E. coli-NDM-1, EC24, K. pneumonia-KPC and K. pneumonia-KPC-NDM treated with 2a (64 µg/mL) suffered from distortion, emerging adhesion between individual cells and crumpled membranes. Mice tests shown that monotherapy of 2a evidently limited growth of EC24 cells, and in combination with MER, it significantly reduced the bacterial load in liver and spleen. Docking studies suggest that the 2,4-dihydroxylbenzene of 2a acts as zinc-binding group with the Zn(II) and the residual amino acids in CphA active center, tightly anchoring the inhibitor at active site. This work offered a promising scaffold for the development of MßLs inhibitors, specifically the antimicrobial for clinically drug-resistant isolates.


Assuntos
Tiossemicarbazonas , Inibidores de beta-Lactamases , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/metabolismo , Escherichia coli , Camundongos , Testes de Sensibilidade Microbiana , Tiossemicarbazonas/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
10.
Bioorg Chem ; 124: 105799, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35462235

RESUMO

The emerging COVID-19 pandemic generated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has severely threatened human health. The main protease (Mpro) of SARS-CoV-2 is promising target for antiviral drugs, which plays a vital role for viral duplication. Development of the inhibitor against Mpro is an ideal strategy to combat COVID-19. In this work, twenty-three hydroxamates 1a-i and thiosemicarbazones 2a-n were identified by FRET screening to be the potent inhibitors of Mpro, which exhibited more than 94% (except 1c) and more than 69% inhibition, and an IC50 value in the range of 0.12-31.51 and 2.43-34.22 µM, respectively. 1a and 2b were found to be the most effective inhibitors in the hydroxamates and thiosemicarbazones, with an IC50 of 0.12 and 2.43 µM, respectively. Enzyme kinetics, jump dilution and thermal shift assays revealed that 2b is a competitive inhibitor of Mpro, while 1a is a time-dependently inhibitor; 2b reversibly but 1a irreversibly bound to the target; the binding of 2b increased but 1a decreased stability of the target, and DTT assays indicate that 1a is the promiscuous cysteine protease inhibitor. Cytotoxicity assays showed that 1a has low, but 2b has certain cytotoxicity on the mouse fibroblast cells (L929). Docking studies revealed that the benzyloxycarbonyl carbon of 1a formed thioester with Cys145, while the phenolic hydroxyl oxygen of 2b formed H-bonds with Cys145 and Asn142. This work provided two promising scaffolds for the development of Mpro inhibitors to combat COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Tiossemicarbazonas , Animais , Antivirais/química , Proteases 3C de Coronavírus , Humanos , Camundongos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , SARS-CoV-2 , Tiossemicarbazonas/farmacologia
11.
J Med Chem ; 65(8): 5954-5974, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420040

RESUMO

Serine/metallo-carbapenemase-coproducing pathogens, often referred to as "superbugs", are a significant clinical problem. They hydrolyze nearly all available ß-lactam antibiotics, especially carbapenems considered as last-resort antibiotics, seriously endangering efficacious antibacterial treatment. Despite the continuous global spread of carbapenem resistance, no dual-action inhibitors are available in therapy. This Perspective is the first systematic investigation of all chemotypes, modes of inhibition, and crystal structures of dual serine/metallo-carbapenemase inhibitors. An overview of the key strategy for designing dual serine/metallo-carbapenemase inhibitors and their mechanism of action is provided, as guiding rules for the development of clinically available dual inhibitors, coadministrated with carbapenems, to overcome the carbapenem resistance issue.


Assuntos
Serina , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias , Carbapenêmicos/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química
12.
Bioorg Chem ; 120: 105654, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149265

RESUMO

The "superbug" infection caused by metallo-ß-lactamases (MßLs) has grown into anemergent health threat, and development of effective MßL inhibitors to restore existing antibiotic efficacy is an ideal alternative. Although the serine-ß-lactamase inhibitors have been used in clinical settings, MßL inhibitors are not available to date. In this work, thirty-one quinolinyl sulfonamides 1a-p and sulphonyl esters 2a-o were synthesized and assayed against MßL NDM-1. The obtained molecules specifically inhibited NDM-1, 1a-p and 2a-o exhibited an IC50 value in the range of 0.02-1.4 and 8.3-24.8 µM, respectively, and 1e and 1f were found to be the most potent inhibitors, with an IC50 of 0.02 µM using meropenem (MER) as substrate. Structure-activity relationship reveals that the substitute phenyl and the phenyl with a halogen atom more significantly improve inhibitory effect of quinolinederivatives on NDM-1. 1a-p restored antimicrobial effect of MER on E. coli with NDM-1, EC01 and EC08, resulting in a 2-64-fold reduction in MIC values. Most importantly, 1e synergized MER and significantly reduced the load of EC08 in the spleen and liver of mice after a single intraperitoneal dose. Docking studies suggested that the endocyclic nitrogen of the quinoline ring, and exocyclic nitrogen of the sulfonamide functional group are coordinate with Zn(II) ion at active sites of NDM-1. Cytotoxicity assays indicated that 1e had low cytotoxicity. This work offers potential lead compounds for further development of the clinically useful inhibitor targeting NDM-1.


Assuntos
Escherichia coli , Ésteres , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Ésteres/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Nitrogênio/farmacologia , Sulfanilamida/farmacologia , Sulfonamidas/farmacologia , beta-Lactamases/química
13.
Chem Biol Drug Des ; 99(2): 362-372, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862744

RESUMO

Bacterial resistance caused by metallo-ß-lactamases (MßLs) has become an emerging public health threat, and the development of MßLs inhibitor is an effective way to overcome the resistance. In this study, thirteen novel O-aryloxycarbonyl hydroxamates were constructed and assayed against MßLs. The obtained molecules specifically inhibited imipenemase-1 (IMP-1) and New Delhi metallo-ß-lactamase-1, exhibiting an IC50 value in the range of 0.10-18.42 and 0.23-22.33 µM, respectively. The hydroxamate 5 was found to be the most potent inhibitor, with an IC50 of 0.1 and 0.23 µM using meropenem and cefazolin as substrates. ICP-MS analysis showed that 5 did not coordinate to the Zn(II) ions at the active site of IMP-1, while the rapid dilution, thermal shift and MALDI-TOF assays revealed that the hydroxamate formed a covalent bond with the enzyme. Cytotoxicity assays indicated that the hydroxamates have low toxicity in MCF-7 cells. This work provided a potent scaffold for the development of MßLs inhibitors.


Assuntos
Ácidos Hidroxâmicos/química , Inibidores de beta-Lactamases/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Células MCF-7 , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade , Inibidores de beta-Lactamases/farmacologia
14.
Bioorg Chem ; 118: 105474, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794102

RESUMO

The worldwide prevalence of NDM-1-producing Gram-negative pathogens has drastically undermined the clinical efficacy of carbapenems, prompting a need to devise an effective strategy to preserve their clinical value. Here we constructed a focused compound library of dithiocarbamates and systematically evaluated their potential synergistic antibacterial activities combined with copper. SA09-Cu exhibited excellent inhibition against a series of clinical NDM-1-producing carbapenem-resistant Enterobacteriaceae (CRE) in restoring meropenem effect, and slowed down the development of carbapenem resistance. Enzymatic kinetic and isothermal titration calorimetry studies demonstrated that SA09-Cu was a noncompetitive NDM-1 inhibitor. The electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) revealed a novel inhibition mechanism, which is that SA09-Cu could convert NDM-1 into an inactive state by oxidizing the Zn(II)-thiolate site of the enzyme. Importantly, SA09-Cu showed a unique redox tuning ability, and avoided to be reduced by intracellular thiols of bacteria. In vivo experiments indicated that SA09 combined with CuGlu could effectively potentiate MER's effect against NDM-1-producing E. coli (EC23) in the murine infection model. This study provides a highly promising scaffold in developing novel inhibitors to combat NDM-1-producing CREs.


Assuntos
Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Inibidores Enzimáticos/farmacologia , Tiocarbamatos/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tiocarbamatos/química
15.
J Antibiot (Tokyo) ; 74(9): 574-579, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34234284

RESUMO

The superbug infection caused by metallo-ß-lactamases (MßLs) carrying drug-resistant bacteria, specifically, New Delhi metallo-ß-lactamase (NDM-1) has become an emerging threat. In an effort to develop novel inhibitors of NDM-1, thirteen thiosemicarbazones (1a-1m) were synthesized and assayed. The obtained molecules specifically inhibited NDM-1, with an IC50 in the range of 0.88-20.2 µM, and 1a and 1f were found to be the potent inhibitors (IC50 = 1.79 and 0.88 µM) using cefazolin as substrate. ITC and kinetic assays indicated that 1a irreversibly and non-competitively inhibited NDM-1 in vitro. Importantly, MIC assays revealed that these molecules by themselves can sterilize NDM-producing clinical isolates EC01 and EC08, exhibited 78-312-fold stronger activities than the cefazolin. MIC assays suggest that 1a (16 µg ml-1) has synergistic antimicrobial effect with ampicillin, cefazolin and meropenem on E. coli producing NDM-1, resulting in MICs of 4-32-, 4-32-, and 4-8-fold decrease, respectively. These studies indicate that the thiosemicarbazide is a valuable scaffold for the development of inhibitors of NDM-1 and NDM-1 carrying drug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Tiossemicarbazonas/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Cefazolina/farmacologia , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
16.
Bioorg Chem ; 114: 105138, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34229201

RESUMO

The expression of ß-lactamases, especially metallo-ß-lactamases (MßLs) in bacteria is one of the main causes of drug resistance. In this work, an effective N-acylhydrazone scaffold as MßL inhibitor was constructed and characterized. The biological activity assays indicated that the synthesized N-acylhydrazones 1-11 preferentially inhibited MßL NDM-1, and 1 was found to be the most effective inhibitor with an IC50 of 1.2 µM. Analysis of IC50 data revealed a structure-activity relationship, which is that the pyridine and hydroxylbenzene substituents at 2-position improved inhibition of the compounds on NDM-1. ITC and enzyme kinetics assays suggested that it reversibly and competitively inhibited NDM-1 (Ki = 0.29 ± 0.05 µM). The synthesized N-acylhydrazones showed synergistic antibacterial activities with meropenem, reduced 4-16-fold MIC of meropenem on NDM-1- producing E. coli BL21 (DE3), while 1 restored 4-fold activity of meropenem on K. pneumonia expressing NDM-1 (NDM-K. pneumoniae). The mice experiments suggested that 1 combined meropenem to fight against NDM-K. pneumoniae infection in the spleen and liver. Cytotoxicity assays showed that 1 and 2 have low cytotoxicity. This study offered a new framework for the development of NDM-1 inhibitors.


Assuntos
Hidrazonas/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Hidrazonas/síntese química , Hidrazonas/química , Camundongos , Camundongos Endogâmicos , Estrutura Molecular , Relação Estrutura-Atividade , Células Vero , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
17.
Bioorg Chem ; 112: 104889, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915460

RESUMO

The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised a global catastrophe. To date, there is no specific antiviral drug available to combat this virus, except the vaccine. In this study, the main protease (Mpro) required for SARS-CoV-2 viral replication was expressed and purified. Thirty-six compounds were tested as inhibitors of SARS-CoV-2 Mpro by fluorescence resonance energy transfer (FRET) technique. The half-maximal inhibitory concentration (IC50) values of Ebselen and Ebsulfur analogs were obtained to be in the range of 0.074-0.91 µM. Notably, the molecules containing furane substituent displayed higher inhibition against Mpro, followed by Ebselen 1i (IC50 = 0.074 µM) and Ebsulfur 2k (IC50 = 0.11 µM). The action mechanism of 1i and 2k were characterized by enzyme kinetics, pre-incubation and jump dilution assays, as well as fluorescent labeling experiments, which suggested that both compounds covalently and irreversibly bind to Mpro, while molecular docking suggested that 2k formed an SS bond with the Cys145 at the enzymatic active site. This study provides two very potent scaffolds Ebsulfur and Ebselen for the development of covalent inhibitors of Mpro to combat COVID-19.


Assuntos
Antivirais/metabolismo , Azóis/metabolismo , Compostos Organosselênicos/metabolismo , SARS-CoV-2/metabolismo , Compostos de Enxofre/metabolismo , Proteínas da Matriz Viral/metabolismo , Antivirais/química , Antivirais/uso terapêutico , Azóis/química , Azóis/uso terapêutico , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Transferência Ressonante de Energia de Fluorescência , Humanos , Concentração Inibidora 50 , Isoindóis , Cinética , Simulação de Acoplamento Molecular , Compostos Organosselênicos/química , Compostos Organosselênicos/uso terapêutico , SARS-CoV-2/isolamento & purificação , Relação Estrutura-Atividade , Compostos de Enxofre/química , Compostos de Enxofre/uso terapêutico , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/genética , Tratamento Farmacológico da COVID-19
18.
Bioorg Med Chem ; 38: 116128, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33862468

RESUMO

To combat the superbug infection caused by metallo-ß-lactamases (MßLs), a dipyridyl-substituted thiosemicarbazone (DpC), was identified to be the broad-spectrum inhibitor of MßLs (NDM-1, VIM-2, IMP-1, ImiS, L1), with an IC50 value in the range of 0.021-1.08 µM. It reversibly and competitively inhibited NDM-1 with a Ki value of 10.2 nM. DpC showed broad-spectrum antibacterial effect on clinical isolate K. pneumonia, CRE, VRE, CRPA and MRSA, with MIC value ranged from 16 to 32 µg/mL, and exhibited synergistic antibacterial effect with meropenem on MßLs-producing bacteria, resulting in a 2-16-, 2-8-, and 8-fold reduction in MIC of meropenem against EC-MßLs, EC01-EC24, K. pneumonia, respectively. Moreover, mice experiments showed that DpC also had synergistic antibacterial action with meropenem. In this work, DpC was identified to be a potent scaffold for the development of broad-spectrum inhibitors of MßLs.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Bactérias/enzimologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
19.
Bioorg Chem ; 107: 104576, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33383326

RESUMO

The superbug infection caused by New Delhi metallo-ß-lactamase (NDM-1) has become an emerging public health threat. Inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. A potent scaffold, diaryl-substituted thiosemicarbazone, was constructed and assayed with metallo-ß-lactamases (MßLs). The obtained twenty-six molecules specifically inhibited NDM-1 with IC50 0.038-34.7 µM range (except 1e, 2e, and 3d), and 1c is the most potent inhibitor (IC50 = 0.038 µM). The structure-activity relationship of synthetic thiosemicarbazones revealed that the diaryl-substitutes, specifically 2-pyridine and 2-hydroxylbenzene improved inhibitory activities of the inhibitors. The thiosemicarbazones exhibited synergistic antimycobacterial actions against E. coli-NDM-1, resulted a 2-512-fold reduction in MIC of meropenem, while 1c restored 16-256-, 16-, and 2-fold activity of the antibiotic on clinical isolates ECs, K. pneumonia and P. aeruginosa harboring NDM-1, respectively. Also, mice experiments showed that 1c had a synergistic antibacterial ability with meropenem, reduced the bacterial load clinical isolate EC08 in the spleen and liver. This work provided a highly promising scaffold for the development of NDM-1 inhibitors.


Assuntos
Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Tiossemicarbazonas/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
20.
Bioorg Chem ; 105: 104436, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171408

RESUMO

Given that ß-lactam antibiotic resistance mediated by metallo-ß-lactamases (MßLs) seriously threatens human health, we designed and synthesized nineteen hydroxamic acids with benzenesulfonamide, which exhibited broad-spectrum inhibition against four tested MßLs ImiS, L1, VIM-2 and IMP-1 (except 6, 13 and 18 on IMP-1, and 18 on VIM-2), with an IC50 value in the range of 0.6-9.4, 1.3-27.4, 5.4-43.7 and 5.2-49.7 µM, respectively, and restored antibacterial activity of both cefazolin and meropenem, resulting in a 2-32-fold reduction in MIC of the antibiotics. Compound 17 shows reversible competitive inhibition on L1 with a Ki value of 2.5 µM and significantly reduced the bacterial load in the spleen and liver of mice infected by E. coli expressing L1. The docking studies suggest that 17 tightly binds to the Zn(Ⅱ) of VIM-2 and CphA by the oxygen atoms of sulfonamide group, but coordinates with the Zn(II) of L1 through the oxygen atoms of hydroxamic acid group. These studies reveal that the hydroxamic acids with benzenesulfonamide are the potent scaffolds for the development of MßL inhibitors.


Assuntos
Desenvolvimento de Medicamentos , Ácidos Hidroxâmicos/farmacologia , Sulfonamidas/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Ácidos Hidroxâmicos/química , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química , Benzenossulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA