Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998163

RESUMO

With the wide application of laser weapons, the requirements of laser protection technology are becoming more and more strict. Therefore, it is important to find ideal optical limiting (OL) materials to protect human eyes and detectors. In this work, the nonlinear optical responses of gold nanoparticles/porous carbon (Au NPs/PC) nanocomposites prepared by the reduction method were studied using the nanosecond Z-scan technique. Compared with porous carbon, the Au NPs/PC nanocomposites show a lower damage threshold, a bigger optical limiting index and a wider absorption spectrum. The interaction between gold nanoparticles and porous carbon enhances the nonlinear scattering effect of suspended bubbles. These results indicate that Au NPs composites have potential applications in the protection of human eyes and detectors.

2.
Fitoterapia ; 177: 106113, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971329

RESUMO

Herpetospermum pedunculosum seeds also known as Herpetospermum caudigerum Wall. is the mature seed of the Herpetospermum pedunculosum(Ser.) C. B. Clarke,Cucurbitaceae. Modern pharmacological studies have shown that H. pedunculosum has hepatoprotective, anti-inflammatory, anti-gout and antibacterial pharmacological activities. The biologically active chemical components include lignin compounds such as Herpetin, Herpetetrone, Herpetoriol and so on. The natural product displays considerable skeletal diversity and structural complexity, offering significant opportunities for novel drug discovery. Based on the multi-omics research strategy and the 'gene-protein-metabolite' research framework, the biosynthetic pathway of terpenoids and lignans in H. pedunculosum has has been elucidated at multiple levels. These approaches provide comprehensive genetic information for cloning and identification of pertinent enzyme genes. Furthermore, the application of multi-omics integrative approaches provides a scientific means to elucidate entire secondary metabolic pathways. We investigated the biosynthetic pathways of lignin and terpene components in H. pedunculosum and conducted bioinformatics analysis of the crucial enzyme genes involved in the biosynthetic process using genomic and transcriptomic data. We identified candidate genes for six key enzymes in the biosynthetic pathway. This review reports on the current literature on pharmacological investigations of H. pedunculosum, proposing its potential as an antidiabetic agent. Moreover, we conclude, for the first time, the identification of key enzyme genes potentially involved in the biosynthesis of active compounds in H. pedunculosum. This review provides a scientific foundation for the discovery of novel therapeutic agents from natural sources.

3.
Nanomaterials (Basel) ; 14(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535681

RESUMO

With the wide application of intense lasers, the protection of human eyes and detectors from laser damage is becoming more and more strict. In this paper, we study the nonlinear optical limiting (OL) properties of porous carbon with a super large specific surface area (2.9 × 103 m2/g) using the nanosecond Z-scan technique. Compared to the traditional OL material C60, the porous carbon material shows an excellent broadband limiting effect, and the limiting thresholds correspond to 0.11 J/cm2 for 532 nm and 0.25 J/cm2 for 1064 nm pulses, respectively. The nonlinear scattering experiments showed that the OL behavior was mainly attributed to the nonlinear scattering effect, which is caused by the rapid growth and expansion of bubbles in the dispersion induced by laser irradiation, and the scattered light distribution is consistent with the results of Mie's scattering. These results suggest that porous carbon materials are expected to be applied to the field of laser protection in the future to further protect the human eye and precision optical instruments.

4.
Risk Anal ; 44(1): 203-228, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37121578

RESUMO

To assess the economic ripple effect, this study integrates agent-based modeling (ABM) with a multiregional input-output (MRIO) table to develop an assessment model that considers capacity recovery process. The intermediate and final demands in the MRIO table are used to describe the agents' interdependence. Survival analysis is used to construct capacity rate curves. By defining the first- and second-order ripple effects, ABM is used to capture the ripple process in days. To conduct a case study, the service and retail sectors in Enshi in Hubei, China, are selected as disaster-affected sectors (they were severely affected by the July 17, 2020 flood disaster). The main findings are as follows: (1) With the first-order ripple effect, the losses caused by service and retail are concentrated within Enshi. Enshi's final demand, construction, and raw materials manufacturing sectors as well as Wuhan's construction sector are seriously affected. (2) With the second-order ripple effect, the losses caused by the service and retail sectors expand, forming a prominent industrial ripple chain: "service (retail)-raw materials manufacturing-construction." (3) The direct and indirect losses caused by the service sector are more significant than those caused by the retail sector. However, the loss ratio of the service sector is smaller than that of the retail sector because of its sound industrial structure and strong resilience. Hence, the indirect losses caused by different sectors are not entirely determined by their direct losses; instead, they are also related to the degree of perfection of the structures of different sectors.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38062756

RESUMO

Aims: Scavenger receptor class B type I (SRBI) promotes cell cholesterol efflux and the clearance of plasma cholesterol. Thus, SRBI deficiency causes abnormal cholesterol metabolism and hyperlipidemia. Studies have suggested that ferroptosis is involved in lipotoxicity; however, whether SRBI deficiency could induce ferroptosis remains to be investigated. Results: We knocked down or knocked out SRBI in renal HK-2 cells and C57BL/6 mice to determine the expression levels of ferroptosis-related regulators. Our results demonstrated that SRBI deficiency upregulates transferrin receptor 1 (TFR1) expression and downregulates ferroportin expression, which induces iron overload and subsequent ferroptosis in renal tubular epithelial cells. TFR1 is known to be regulated by hypoxia-inducible factor-1α (HIF-1α). Next, we investigated whether SRBI deletion affected HIF-1α. SRBI deletion upregulated the mRNA and protein expression of HIF-1α, and promoted its translocation to the nucleus. To determine whether HIF-1α plays a key role in SRBI-deficiency-induced ferroptosis, we used HIF-1α inhibitor and siHIF-1α in HK-2 cells, and found that downregulation of HIF-1α prevented SRBI-silencing-induced TFR1 upregulation and iron overload, and eventually reduced ferroptosis. The underlying mechanism of HIF-1α activation was explored next, and the results showed that SRBI knockout or knockdown may upregulate the expression of HIF-1α, and promote HIF-1α translocation from the cytoplasm into the nucleus via the PKC-ß/NF-κB signaling pathway. Innovation and Conclusion: Our study showed, for the first time, that SRBI deficiency induces iron overload and subsequent ferroptosis via the HIF-1α/TFR1 pathway.

6.
ACS Mater Au ; 3(2): 83-87, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38089727

RESUMO

Molecular systems composed of information-rich nucleic acids have emerged as one of the most robust materials due to their programmability, editability, and designability. Among their various applications, the specific and sensitive in vitro detection of biomolecules for the purpose of disease diagnosis has attracted increasing attention from both fundamental and translational researchers. In this perspective, we introduce the basic design principles for nucleic acid molecular systems toward in vitro detection of biomolecules, accompanied by representative examples from reported works. The perspective concludes with perspectives and outlooks to tackle a variety of technical hurdles for the development and practical translation of nucleic acid molecular systems for biomolecule detection.

7.
Environ Pollut ; 334: 122163, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429492

RESUMO

In this study, the release behavior of fertilizers (NH4+-N, PO43- and K) and heavy metals (Mn, Zn, Ni, Cu, Pb and Cr) from iron-loaded sludge biochar (ISBC) was investigated to evaluated the feasibility and risks of ISBC as a slow release fertilizer. Their release capacity was significantly enhanced with decreasing initial pH, increasing solid-liquid ratio (RS-L) and rising temperature (p < 0.05). When the initial pH, RS-L and temperature were separately 5 (fertilizers)/1 (heavy metals), 1:5 and 298 K, the final concentrations of NH4+-N, PO43-, K, Mn, Zn and Ni were 6.60, 14.13, 149.4, 53.69, 72.56, and 1.01 mg L-1, while the maximum concentrations of Cu, Pb and Cr were 0.94, 0.77, and 0.22 mg L-1, respectively. Due to the tiny difference between the R2 values, revised pseudo-first-order and pseudo-second-order kinetics models described their release behavior well, suggesting that physical and chemical interactions played an important role. Activation energies greater than 40 kJ mol-1 indicated that the rate-controlling steps of the release of NH4+-N, PO43- and Ni were chemical reactions, while chemical reactions and diffusion together determined the release rates of K, Mn, Zn, Cu, Pb and Cr because their activation energies were in the range of 20-40 kJ mol-1. The increasingly negative ΔG and positive ΔH and ΔS suggested that their release was a spontaneous (except Cr) and endothermic process with an increase of randomness between the solid-liquid interface. The release efficiency of NH4+-N, PO43- and K were in the ranges of 28.21%-53.97%, 2.09%-18.06% and 39.46%-66.14%, respectively. Meanwhile, the pollution index and evaluation index of heavy metals were in the ranges of 33.31-227.4 and 4.64-29.24, respectively. In summary, ISBC could be used as a slow-release fertilizer with low risk when the RS-L was less than 1:40.


Assuntos
Ferro , Metais Pesados , Fertilizantes , Esgotos , Chumbo , Água
8.
Chemosphere ; 337: 139355, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37385485

RESUMO

In this study, the effect of iron-loaded sludge biochar (ISBC) with different amendment dosages (mass ratio of biochar to soil equal to 0, 0.01, 0.025 and 0.05) on the phytoremediation potential of Leersia hexandra swartz (L. hexandra) to Cr-contaminated soil was investigated. With increasing ISBC dosage from 0 to 0.05, plant height, aerial tissue biomass and root biomass increased from 15.70 cm, 0.152 g pot-1 and 0.058 g pot-1 to 24.33 cm, 0.304 g pot-1 and 0.125 g pot-1, respectively. Simultaneously, the Cr contents in aerial tissues and roots increased from 1039.68 mg kg-1 to 2427.87 mg kg-1 to 1526.57 mg kg-1 and 3242.62 mg kg-1, respectively. Thus, the corresponding bioenrichment factor (BCF), bioaccumulation factor (BAF), total phytoextraction (TPE) and translocation factor (TF) values were also increased from 10.52, 6.20, 0.158 mg pot-1 (aerial tissue)/0.140 mg pot-1 (roots) and 0.428 to 15.15, 9.42, 0.464 mg pot-1 (aerial tissue)/0.405 mg pot-1 (roots) and 0.471, respectively. The significant positive effect of ISBC amendment was primarily attributed to the following three aspects: 1) the root resistance index (RRI), tolerance index (TI) and growth toxicity index (GTI) of L. hexandra to Cr were increased from 100%, 100% and 0%-216.88%, 155.02% and 42.18%, respectively; 2) the bio-available Cr content in the soil was decreased from 1.89 mg L-1 to 1.48 mg L-1, while the corresponding TU (toxicity units) value was declined from 0.303 to 0.217; 3) the activities of urease, sucrase and alkaline phosphatase in soil were increased from 0.186 mg g-1, 1.40 mg g-1 and 0.156 mg g-1 to 0.242 mg g-1, 1.86 mg g-1 and 0.287 mg g-1, respectively. In summary, ISBC amendment was able to significantly improve the phytoremediation of Cr-contaminated soils by L. hexandra.


Assuntos
Ferro , Poluentes do Solo , Cromo , Esgotos , Biodegradação Ambiental , Poaceae , Solo
9.
Asian J Pharm Sci ; 18(3): 100810, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37274927

RESUMO

The appearance of multidrug-resistant bacteria and the formation of bacterial biofilms have necessitated the development of alternative antimicrobial therapeutics. Antibiotics conjugated with or embedded in nano-drug carriers show a great potential and advantage over free drugs, but the mass proportion of carriers generally exceeds 90% of the nano-drug, resulting in low drug loading and limited therapeutic output. Herein, we fabricated a nanocarrier using antibiotics as the building blocks, minimizing the use of carrier materials, significantly increasing the drug loading content and treatment effect. Firstly, we conjugated betaine carboxylate with ciprofloxacin (CIP) through an ester bond to form the amphiphilic conjugate (CIP-CB), which self-assembled into micelles (CIP-CBMs) in aqueous solutions, with a CIP loading content as high as 65.4% and pH-induced surface charge reversal properties. Secondly, a model photosensitizer (5, 10, 15, 20-tetraphenylporphyrin (TPP)) was encapsulated in CIP-CBMs, generating infection-targeted photodynamic/antibiotic combined nanomedicines (denoted as TPP@CIP-CBMs). Upon accumulation at infection sites or in deep bacterial biofilms, the ester bond between the betaine carboxylate and CIP is cleaved to release free TPP and CIP, leading to a synergetic antibacterial and antibiofilm activity in vitro and in vivo.

10.
Comput Struct Biotechnol J ; 21: 3054-3072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273853

RESUMO

Crohn's disease (CD) is an inflammatory bowel disease (IBD) with complex clinical manifestations such as chronic diarrhea, weight loss and hematochezia. Despite the increasing incidence worldwide, cure of CD remains extremely difficult. The rapid development of high-throughput sequencing technology with integrated-omics analyses in recent years has provided a new means for exploring the pathogenesis, mining the biomarkers and designing targeted personalized therapeutics of CD. Host genomics and epigenomics unveil heredity-related mechanisms of susceptible individuals, while microbiome and metabolomics map host-microbe interactions in CD patients. Proteomics shows great potential in searching for promising biomarkers. Nonetheless, single omics technology cannot holistically connect the mechanisms with heterogeneity of pathological behavior in CD. The rise of multi-omics analysis integrates genetic/epigenetic profiles with protein/microbial metabolite functionality, providing new hope for comprehensive and in-depth exploration of CD. Herein, we emphasized the different omics features and applications of CD and discussed the current research and limitations of multi-omics in CD. This review will update and deepen our understanding of CD from integration of broad omics spectra and will provide new evidence for targeted individualized therapeutics.

11.
J Environ Manage ; 339: 117845, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054594

RESUMO

Given the unstoppable forces behind regional economic integration trends, damages from a flood disaster in a specific area will influence correlative cities through industrial linkages and make economic systems more vulnerable. Assessing urban vulnerability is an essential part of flood prevention and mitigation, and also a hot topic of recent research. Therefore, this study (1) constructed a mixed multiregional input-output (mixed-MRIO) model to explore ripple effects on other regions and sectors when production in a flooded area is constrained, and (2) applied this model to characterize the economic vulnerability of cities and sectors in Hubei Province, China by simulation. First, various hypothetical flood disaster scenarios are simulated to reveal the ripple effects of different events. The composite vulnerability is assessed by analyzing economic-loss sensitivity rankings across scenarios. Then, the model is applied to the case of a 50-year return period flood that occurred in Enshi City, Hubei Province, on July 17, 2020 to empirically verify the usefulness of such a simulation-based approach in evaluating vulnerability. The results indicate vulnerability is higher in Wuhan City, Yichang City, and Xiangyang City and for three manufacturing sector types: livelihood-related manufacturing, raw materials manufacturing, and processing and assembly manufacturing. Such cities and industrial sectors with high vulnerability will significantly benefit from prioritization in flood management.


Assuntos
Desastres , Inundações , China , Cidades
12.
Free Radic Biol Med ; 195: 89-102, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581059

RESUMO

Renal tubular damage plays a key role in the pathogenesis of diabetic kidney disease (DKD), and one of the main pathological process associated with DKD in diabetic mice is the ferroptosis, a novel form of cell death caused by iron-dependent lipid peroxidation. Several researches suggested that empagliflozin may treat renal injury, but its effects on diabetic-related ferroptosis and underlying mechanisms were not fully elucidated. In this study, the influence of empagliflozin on renal injury was evaluated in vivo and in vitro in a mouse model and in high-glucose (HG) or Erastin-stimulated renal HK-2 cell line, respectively. Ferroptosis-related markers were assessed, including GSH, labile iron levels, and ferroptosis regulators by Western blot, qRT-PCR, immunohistochemistry, and immunofluorescence. The level of malondialdehyde (MDA) and the fluorescence intensity of BODIPY probe indicated the level of lipid peroxidation. It was demonstrated that solute carrier family 7, member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were less expressed in renal biopsy samples from patients affected by DKD than in those from non-diabetic renal disease patients (NDRD), proving the ferroptosis of tubular epithelial cells in case of DKD. Furthermore, empagliflozin markedly decreased the ferroptosis impairment in DKD mice, as well as in HG model of HK-2 cells. Our investigations showed the ability of empagliflozin to suppress ferroptosis was partially countered by AMP-activated protein kinase (AMPK) inhibitor, which led to a reduction of the nuclear translocation of the antioxidant transcription factor NFE2-related factor 2 (NRF2) and downregulation of target genes such as GPX4, ferritin heavy chain 1 (FTH1), and SLC7A11, while AMPK agonists were responsible for the enhancement of the protective effects of empagliflozin. Taken together, our findings showed that empagliflozin may prevent the development of ferroptosis by promoting the AMPK-mediated NRF2 activation pathway, providing important insights for possible novel treatment approaches for DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Proteínas Quinases Ativadas por AMP/genética , Fator 2 Relacionado a NF-E2/genética , Diabetes Mellitus Experimental/tratamento farmacológico
13.
Am J Pathol ; 192(11): 1531-1545, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35963464

RESUMO

Several studies in recent years have shown that lipid overload causes lipotoxic damage to the kidney, and oxidative stress, inflammation, and autophagic arrest are all important mechanisms of renal lipotoxicity. However, effective measures with therapeutic effects on renal lipotoxicity are limited. The present study indicated the protective effect of the paraoxonase 1 (PON1) against renal lipotoxicity in high-fat diet-fed scavenger receptor class B type I-deficient (SR-BI-/-) mice. The results showed that SR-BI-/- mice exhibited significant renal pathologic characteristics, such as oxidative stress, inflammation, and fibrosis, under a normal chow diet, and were accompanied by dyslipidemia and reduced plasma PON1 activity and renal PON1 levels. PON1 overexpression significantly attenuated the above pathologic changes in the kidneys of SR-BI-/- mice fed with a high-fat diet. Mechanistically, PON1 may ameliorate renal oxidative stress by reducing reactive oxygen species production, reduce renal lipid accumulation by inhibiting AKT/mechanistic target of rapamycin kinase pathway to activate lipophagy, and reduce the occurrence of inflammation and cell death by inhibiting Nod-like receptor family protein 3 inflammasome-mediated pyroptosis. The present study is the first to show that PON1 overexpression can effectively alleviate renal lipotoxicity injury, and PON1 may be a promising therapeutic strategy for the treatment of renal lipotoxicity-related diseases.

14.
Comput Struct Biotechnol J ; 20: 2402-2414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664229

RESUMO

Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a set of clinically chronic, relapsing gastrointestinal inflammatory disease and lacks of an absolute cure. Although the precise etiology is unknown, developments in high-throughput microbial genomic sequencing significantly illuminate the changes in the intestinal microbial structure and functions in patients with IBD. The application of microbial metabolomics suggests that the microbiota can influence IBD pathogenesis by producing metabolites, which are implicated as crucial mediators of host-microbial crosstalk. This review aims to elaborate the current knowledge of perturbations of the microbiome-metabolome interface in IBD with description of altered composition and metabolite profiles of gut microbiota. We emphasized and elaborated recent findings of several potentially protective metabolite classes in IBD, including fatty acids, amino acids and derivatives and bile acids. This article will facilitate a deeper understanding of the new therapeutic approach for IBD by applying metabolome-based adjunctive treatment.

15.
Nano Lett ; 22(8): 3410-3416, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35389660

RESUMO

Cell membrane proteins play a pivotal role in regulating intracellular signal transductions and cell behaviors. Many membrane proteins form clusters in order to initiate downstream signaling pathways for the modulation of cell behaviors. Developing rational methods to program the in situ clustering of designated membrane proteins on the cell surface to form large assemblies remains challenging. Here we use the membrane-anchored DNA hybridization chain reaction (HCR) to induce DNA self-assembly on the live cell surface and drive the unidirectional clustering of membrane proteins for the modulation of cell behaviors. Reactive DNA strands are specifically anchored onto the membrane proteins of interest by using DNA aptamers. Upon activation, the chain reaction between the protein-anchored DNA strands drives the assembly of membrane proteins forming one-dimensional clusters. We demonstrate both homogeneous and heterogeneous clustering of membrane proteins on multiple cell types that exhibit a potent capability for modulating cell behaviors including migration, proliferation, and survival.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas de Membrana , Aptâmeros de Nucleotídeos/genética , Análise por Conglomerados , DNA/genética , Proteínas de Membrana/genética , Hibridização de Ácido Nucleico
16.
ACS Appl Mater Interfaces ; 14(7): 8847-8864, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138798

RESUMO

The appearance of multidrug-resistant bacteria and their biofilms presents a serious threat to modern medical systems. Herein, we fabricated a novel gold-nanorod-based chemo-photothermal-integrated antimicrobial platform with surface-charge-switchable and near-infrared (NIR)-induced size-transformable activities that show an enhanced killing efficiency against methicillin-resistant Staphylococcus aureus (MRSA) in both planktonic and biofilm phenotypes. The nanocomposites are prepared by in situ copolymerization using N-isopropyl acrylamide (NIPAM), acrylic acid (AA), and N-allylmethylamine (MAA) as monomers on the surfaces of gold nanorods (GNRs). Ciprofloxacin (CIP) is loaded onto polymer shells of nanocomposites with a loading content of 9.8%. The negatively charged nanocomposites switch to positive upon passive accumulation at the infectious sites, which promotes deep biofilm penetration and bacterial adhesion of the nanoparticles. Subsequently, NIR irradiation triggers the nanocomposites to rapidly shrink in volume, further increasing the depth of biofilm penetration. The NIR-triggered, ultrafast volume shrinkage causes an instant release of CIP on the bacterial surface, realizing the synergistic benefits of chemo-photothermal therapy. Both in vitro and in vivo evidence demonstrate that drug-loaded nanocomposites could eradicate clinical MRSA biofilms. Taken together, the multifunctional chemo-photothermal-integrated antimicrobial platform, as designed, is a promising antimicrobial agent against MRSA infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Nanotubos , Biofilmes , Ouro/farmacologia , Nanocompostos/uso terapêutico , Fototerapia
17.
BMC Nephrol ; 23(1): 29, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027003

RESUMO

BACKGROUND: Renal insufficiency (RI) is a frequent comorbidity among patients with acute coronary syndrome (ACS). We aimed to evaluate the attributable risk associated with mild RI for the in-hospital outcomes in patients with ACS. METHODS: The Improving Care for Cardiovascular Disease in China-ACS (CCC-ACS) Project was a collaborative study of the American Heart Association and the Chinese Society of Cardiology. A total of 92,509 inpatients with a discharge diagnosis of ACS were included. The attributable risk was calculated to investigate the effect of mild RI (eGFR 60-89 ml / min · 1.73 m2) on major adverse cardiovascular events (MACEs) during hospitalization. RESULTS: The average age of these ACS patients was 63 years, and 73.9% were men. The proportion of patients with mild RI was 36.17%. After adjusting for other possible risk factors, mild RI was still an independent risk factor for MACEs in ACS patients. In the ACS patients, the attributable risk of eGFR 60-89ml/min·1.73m2 to MACEs was 7.78%, 4.69% of eGFR 45-59 ml/min·1.73m2, 4.46% of eGFR 30-44 ml/min·1.73m2, and 3.36% of eGFR<30 ml/min·1.73m2. CONCLUSION: Compared with moderate to severe RI, mild RI has higher attributable risk to MACEs during hospitalization in Chinese ACS population.


Assuntos
Síndrome Coronariana Aguda/complicações , Insuficiência Renal/etiologia , Síndrome Coronariana Aguda/terapia , Idoso , China , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Melhoria de Qualidade , Insuficiência Renal/epidemiologia , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença
18.
Anal Chem ; 93(49): 16552-16561, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34859996

RESUMO

In vivo levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical to many physiological and pathological processes. Because of the distinct differences in their biological generation and effects, simultaneously visualizing both of them could help deepen our insights into the mechanistic details of these processes. However, real-time and deep-tissue imaging and differentiation of ROS- and RNS-related molecular events in living subjects still remain a challenge. Here, we report the development of two activatable 19F magnetic resonance imaging (MRI) molecular probes with different 19F chemical shifts and specific responsive behaviors for simultaneous in vivo detection and deep-tissue imaging of O2•- and ONOO-. These probes are capable of real-time visualization and differentiation of O2•- and ONOO- in living mice with drug-induced acute kidney injury by interference-free multiplexed hot-spot 19F MRI, illustrating the potential of this technique for background-free real-time imaging of diverse biological processes, accurate diagnosis of various diseases in deep tissues, and rapid toxicity evaluation of assorted drugs.


Assuntos
Injúria Renal Aguda , Preparações Farmacêuticas , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico por imagem , Animais , Imageamento por Ressonância Magnética , Camundongos , Nitrogênio , Oxigênio
19.
Artigo em Inglês | MEDLINE | ID: mdl-34831837

RESUMO

COVID-19 has had a great impact on the economy, society, and people's lives in China and globally. The production and operations of Chinese enterprises have also faced tremendous challenges. To understand the economic impact of COVID-19 on enterprises and the key affecting factors, this study adds to the literature by investigating the business recovery process of enterprises from the micro perspective. Specific attention is paid to the initial stage of business recovery. A questionnaire survey of 750 enterprises explored the impact during the pandemic period from July to September 2020. An accelerated failure time model in survival analysis was adopted to analyze the data. The results show that the manufacturing industry is mainly faced by affecting factors such as enterprise ownership, employees' panic and order cancellation on initial enterprise recovery. As for the non-manufacturing industry, more factors, including clients' distribution, employees' panic, raw material shortage, cash flow shortage and order cancellation, are found to be significant. Acceleration factors that estimate the effects of those covariates on acceleration/deceleration of the recovery time are presented. For instance, the acceleration factor of employees' panic is 1.319 for non-manufacturing, which implies that, compared with enterprises where employees are less panicked, enterprises with employees obviously panicked will recover 1.319 times slower at any quantile of probability of recovery time. This study provides a scientific reference for the post-pandemic recovery of enterprises, and can support the formulation of government policies and enterprise decisions.


Assuntos
COVID-19 , China , Comércio , Governo , Humanos , Pandemias , SARS-CoV-2
20.
Anal Chem ; 93(41): 13893-13903, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609146

RESUMO

NIR-II fluorescent nanoprobes based on inorganic materials, including rare-earth-doped nanoparticles, single-walled carbon nanotubes, CdS quantum dots (QDs), gold nanoclusters, etc., have gained growing interest in bioimaging applications. However, these nanoprobes are usually not biodegradable and lack therapeutic functions. Herein, we developed novel NIR-II fluorescence (FL) imaging and therapeutic nanoprobes based on black phosphorus QDs (BPQDs), which exhibited excellent biodegradability and high tunability of size-dependent optical properties. By adjusting the size of nanoparticles, BPQDs can specifically accumulate in the kidney or liver. Importantly, a low dosage of BPQDs can effectively protect tissues from reactive oxygen species (ROS)-mediated damage in acute kidney and liver injury, which was real-time monitored by responsive NIR-II fluorescence imaging. Overall, we developed novel NIR-II emitting and therapeutic BPQDs with excellent biodegradability vivo, providing a promising candidate for NIR-II FL imaging and ROS scavenging.


Assuntos
Nanotubos de Carbono , Pontos Quânticos , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA