Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14335, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972585

RESUMO

Foraging decisions shape the structure of food webs. Therefore, a behavioural shift in a single species can potentially modify resource-flow dynamics of entire ecosystems. To examine this, we conducted a field experiment to assess foraging niche dynamics of semi-arboreal brown anole lizards in the presence/absence of predatory ground-dwelling curly-tailed lizards in a replicated set of island ecosystems. One year after experimental translocation, brown anoles exposed to these predators had drastically increased perch height and reduced consumption of marine-derived food resources. This foraging niche shift altered marine-to-terrestrial resource-flow dynamics and persisted in the diets of the first-generation offspring. Furthermore, female lizards that displayed more risk-taking behaviours consumed more marine prey on islands with predators present. Our results show how predator-driven rapid behavioural shifts can alter food-web connectivity between oceanic and terrestrial ecosystems and underscore the importance of studying behaviour-mediated niche shifts to understand ecosystem functioning in rapidly changing environments.


Assuntos
Ecossistema , Lagartos , Animais , Feminino , Cadeia Alimentar , Comportamento Predatório
2.
Curr Opin Insect Sci ; 59: 101078, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37380104

RESUMO

Recent studies have continued to shed light on the ecology of monarch butterflies (Danaus plexippus) in western North America. These studies have documented a declining overwintering population over several decades, punctuated by unexpected variability in recent years. Understanding this variability will require grappling with the spatial and temporal heterogeneity of resources and risks presented to western monarchs throughout their annual life cycle. Recent changes in the western monarch population further illustrate how interacting global change drivers can create complex causes and consequences in this system. The complexity of this system should inspire humility. However, even recognizing the limits of our current understanding, there is enough scientific common ground to take some conservation actions now.


Assuntos
Borboletas , Animais , Migração Animal , América do Norte , Ecologia , Estágios do Ciclo de Vida
3.
Ecology ; 104(1): e3854, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054762

RESUMO

Phenological shifts have the potential to change species interactions, but relatively few studies have used experimental manipulations to examine the effects of variation in timing of an interspecific interaction across a series of life stages of a species. Although previous experimental studies have examined the consequences of phenological timing in plant-herbivore interactions for both plants and their herbivores, less is known about their effects on subsequent plant reproduction. Here, we conducted an experiment to determine how shifts in the phenological timing of monarch (Danaus plexippus) larval herbivory affected milkweed (Asclepias fascicularis) host plant performance, including effects on growth and subsequent effects on flower and seed pod phenology and production. We found that variation in the timing of herbivory affected both plant growth and reproduction, with measurable effects several weeks to several months after herbivory ended. The timing of herbivory had qualitatively different effects on vegetative and reproductive biomass: early-season herbivory had the strongest effects on plant size, whereas late-season herbivory had the strongest effects on the production of viable seeds. These results show that phenological shifts in herbivory can have persistent and qualitatively different effects on different life stages across the season.


Assuntos
Asclepias , Borboletas , Animais , Herbivoria , Larva , Estações do Ano , Plantas , Reprodução
4.
Trends Ecol Evol ; 37(11): 997-1005, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35918208

RESUMO

Intraspecific trait variation has tremendous importance for species interactions and community composition. A major source of intraspecific trait variation is an organism's developmental stage; however, timing is rarely considered in studies of the ecological effects of intraspecific variation. Here, we examine the role of time in the ecology of intraspecific trait variation, focusing on plants and their interactions with other organisms. Trait variation due to differences in developmental timing has unique features and dynamics, distinguishing it from variation due to genes or the environment. When time is considered in studies of intraspecific trait ecology, the degree of variability in timing within a population becomes a key factor structuring trait-mediated ecological interactions and community processes.


Assuntos
Ecologia , Plantas , Fenótipo , Plantas/genética
5.
Ecol Evol ; 12(7): e9039, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35845370

RESUMO

Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)-monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single-year decline in the western monarch population. Our results show early- and late-season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early-season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early-spring migrant female monarchs select earlier-emerging plants to balance a seasonal trade-off between increasing host plant quantity and decreasing host plant quality. Late-season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late-season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom-up, top-down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed-monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.

6.
Am J Bot ; 108(11): 2196-2207, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34622948

RESUMO

PREMISE: Many animals provide ecosystem services in the form of pollination including honeybees, which have become globally dominant floral visitors. A rich literature documents considerable variation in single visit pollination effectiveness, but this literature has yet to be extensively synthesized to address whether honeybees are effective pollinators. METHODS: We conducted a hierarchical meta-analysis of 168 studies and extracted 1564 single visit effectiveness (SVE) measures for 240 plant species. We paired SVE data with visitation frequency data for 69 of these studies. We used these data to ask three questions: (1) Do honeybees (Apis mellifera) and other floral visitors differ in their SVE? (2) To what extent do plant and pollinator attributes predict differences in SVE between honeybees and other visitors? (3) Is there a correlation between visitation frequency and SVE? RESULTS: Honeybees were significantly less effective than the most effective non-honeybee pollinators but were as effective as the average pollinator. The type of pollinator moderated these effects. Honeybees were less effective compared to the most effective and average bird and bee pollinators but were as effective as other taxa. Visitation frequency and SVE were positively correlated, but this trend was largely driven by data from communities where honeybees were absent. CONCLUSIONS: Although high visitation frequencies make honeybees important pollinators, they were less effective than the average bee and rarely the most effective pollinator of the plants they visit. As such, honeybees may be imperfect substitutes for the loss of wild pollinators, and safeguarding pollination will benefit from conservation of non-honeybee taxa.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Flores , Plantas
7.
Curr Opin Insect Sci ; 47: 90-102, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34004376

RESUMO

Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have documented the complex and counterintuitive effects of these drivers on the behavior, life histories, distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-additive and combined effects. While there is wide consensus that global change is reorganizing communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global change.


Assuntos
Mudança Climática , Insetos , Animais
8.
Am Nat ; 196(3): 369-381, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32813995

RESUMO

AbstractIncreases in consumer abundance following a resource pulse can be driven by diet shifts, aggregation, and reproductive responses, with combined responses expected to result in faster response times and larger numerical increases. Previous work in plots on large Bahamian islands has shown that lizards (Anolis sagrei) increased in abundance following pulses of seaweed deposition, which provide additional prey (i.e., seaweed detritivores). Numerical responses were associated with rapid diet shifts and aggregation, followed by increased reproduction. These dynamics are likely different on isolated small islands, where lizards cannot readily immigrate or emigrate. To test this, we manipulated the frequency and magnitude of seaweed resource pulses on whole small islands and in plots within large islands, and we monitored lizard diet and numerical responses over 4 years. We found that seaweed addition caused persistent increases in lizard abundance on small islands regardless of pulse frequency or magnitude. Increased abundance may have occurred because the initial pulse facilitated population establishment, possibly via enhanced overwinter survival. In contrast with a previous experiment, we did not detect numerical responses in plots on large islands, despite lizards consuming more marine resources in subsidized plots. This lack of a numerical response may be due to rapid aggregation followed by disaggregation or to stronger suppression of A. sagrei by their predators on the large islands in this study. Our results highlight the importance of habitat connectivity in governing ecological responses to resource pulses and suggest that disaggregation and changes in survivorship may be underappreciated drivers of pulse-associated dynamics.


Assuntos
Dieta/veterinária , Ecossistema , Cadeia Alimentar , Lagartos/fisiologia , Animais , Bahamas , Feminino , Ilhas , Masculino , Alga Marinha , Comportamento Social
9.
J Anim Ecol ; 89(9): 2056-2062, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472554

RESUMO

Induced plant responses to herbivory are common, and we have learned a lot about the mechanisms of induced resistance and their effects on herbivore performance. We know less about their effects on herbivore behaviour and especially on spatial patterns of damage. Theoretical models predict that induced responses can cause patterns of damage to become aggregated, random or even. A recent model predicted that informed herbivore movement coupled with communication between plants would make damage more even within individual plants. We tested these predictions in the field using a specialist beetle Trirhabda pilosa that feeds on sagebrush Artemisia tridentata. Both the beetle and the plant are well-documented to respond to damage-induced volatile cues. Beetle larvae were more likely to move from damaged leaves and leaves that had been exposed to volatiles from nearby damaged leaves compared to undamaged control leaves. Previous laboratory results indicated that beetles were more likely to choose undamaged leaves compared to damaged leaves or those exposed to volatile cues of damage. A comparison of damage patterns early in the season and after completion of beetle feeding revealed that variance in damage among branches decreased as the season progressed; that is, damage became more evenly distributed among the branches within a plant. Larvae damaged many leaves on a plant but removed relatively little tissue from each leaf. Herbivore movement and the spatial patterns of damage that it creates can be important in determining effects on plant fitness and other population processes. Dispersion of damage deserves more consideration in plant-herbivore studies.


Assuntos
Artemisia , Besouros , Compostos Orgânicos Voláteis , Animais , Sinais (Psicologia) , Herbivoria , Larva , Folhas de Planta
10.
Ecology ; 101(7): e03029, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32115691

RESUMO

Seasonal windows of opportunity represent intervals of time within a year during which organisms have improved prospects of achieving life history aims such as growth or reproduction, and may be commonly structured by temporal variation in abiotic factors, bottom-up factors, and top-down factors. Although seasonal windows of opportunity are likely to be common, few studies have examined the factors that structure seasonal windows of opportunity in time. Here, we experimentally manipulated host-plant age in two milkweed species (Asclepias fascicularis and Asclepias speciosa) in order to investigate the role of plant-species-specific and plant-age-varying traits on the survival and growth of monarch caterpillars (Danaus plexippus). We show that the two plant species showed diverging trajectories of defense traits with increasing age. These species-specific and age-varying host-plant traits significantly affected the growth and survival of monarch caterpillars through both resource quality- and quantity-based constraints. The effects of plant age on monarch developmental success were comparable to and sometimes larger than those of plant-species identity. We conclude that species-specific and age-varying plant traits are likely to be important factors with the potential to structure seasonal windows of opportunity for monarch development, and examine the implications of these findings for both broader patterns in the ontogeny of plant defense traits and the specific ecology of milkweed-monarch interactions in a changing world.


Assuntos
Asclepias , Borboletas , Animais , Ecologia , Herbivoria , Larva
11.
Ecology ; 101(1): e02880, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31486534

RESUMO

Many organisms experience seasonal windows of opportunity for growth and reproduction. These windows represent intervals in time when organisms experience improved prospects for advancing their life history objectives, constrained by the combined effects of seasonally variable biotic and abiotic conditions acting independently or in combination. Although seasonal windows of opportunity are likely to be widespread in nature, relatively few studies have conducted the repeated observations necessary to identify them or suggest the factors that structure them in time. Here, we present the results of three experimental studies conducted at different field sites in three different years in which we manipulated the phenology of monarch caterpillars (Danaus plexippus) throughout the growing season. The primary aims of these experiments were (1) to identify seasonal windows of opportunity for successful larval development on milkweed (Asclepias spp.), and (2) to suggest which factors are most likely to constrain these windows of opportunity in time. We found strong seasonal windows of opportunity in the developmental success of monarchs, with distinct periods of higher developmental prospects during each study year. We evaluated the role of seasonal variation in abiotic thermal stress, host plant density, host plant defensive traits, and natural enemy risk as potential factors that may limit seasonal windows of opportunity. By comparing the seasonal patterns of larval success and potential explanatory factors across all 3 yr, we find patterns that are consistent with seasonally variable abiotic conditions, host plant availability, host plant traits, and natural enemy risk factors. These results suggest the potential for seasonal variation in the factors that limit monarch larval development and population growth. More generally, this study also highlights the value of temporally explicit experimental studies that can identify and examine seasonal patterns in species interactions.


Assuntos
Asclepias , Borboletas , Animais , Clima , Larva , Estações do Ano
12.
Environ Entomol ; 48(6): 1331-1339, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789364

RESUMO

Human activity is rapidly increasing the radiance and geographic extent of artificial light at night (ALAN) leading to alterations in the development, behavior, and physiological state of many organisms. A limited number of community-scale studies investigating the effects of ALAN have allowed for spatial aggregation through positive phototaxis, the commonly observed phenomenon of arthropod movement toward light. We performed an open field study (without restricted arthropod access) to determine the effects of ALAN on local arthropod community composition, plant traits, and local herbivory and predation rates. We found strong positive phototaxis in 10 orders of arthropods, with increased (159% higher) overall arthropod abundance under ALAN compared to unlit controls. The arthropod community under ALAN was more diverse and contained a higher proportion of predaceous arthropods (15% vs 8%). Predation of immobilized flies occurred 3.6 times faster under ALAN; this effect was not observed during the day. Contrary to expectations, we also observed a 6% increase in herbivory under ALAN. Our results highlight the importance of open experimental field studies in determining community-level effects of ALAN.


Assuntos
Artrópodes , Herbivoria , Animais , Humanos , Luz , Plantas , Comportamento Predatório
13.
Ecol Lett ; 22(11): 1850-1859, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31412432

RESUMO

Most prominent theories of food web dynamics imply the simultaneous action of bottom-up and top-down forces. However, transient bottom-up effects resulting from resource pulses can lead to sequential shifts in the strength of top-down predator effects. We used a large-scale field experiment (32 small islands sampled over 5 years) to probe how the frequency and magnitude of pulsed seaweed inputs drives temporal variation in the top-down effects of lizard predators. Short-term weakening of lizard effects on spiders and plants (the latter via a trophic cascade) were associated with lizard diet shifts, and were more pronounced with larger seaweed inputs. Long-term strengthening of lizard effects was associated with lizard numerical responses and plant fertilisation. Increased pulse frequency reinforced the strengthening of lizard effects on spiders and plants. These results underscore the temporally variable nature of top-down effects and highlight the role of resource pulses in driving this variation.


Assuntos
Lagartos , Alga Marinha , Aranhas , Animais , Cadeia Alimentar , Ilhas , Comportamento Predatório
14.
Biol Rev Camb Philos Soc ; 94(5): 1761-1773, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31134728

RESUMO

Animal movements are important drivers of nutrient redistribution that can affect primary productivity and biodiversity across various spatial scales. Recent work indicates that incorporating these movements into ecosystem models can enhance our ability to predict the spatio-temporal distribution of nutrients. However, the role of animal behaviour in animal-mediated nutrient transport (i.e. active subsidies) remains under-explored. Here we review the current literature on active subsidies to show how the behaviour of active subsidy agents makes them both ecologically important and qualitatively distinct from abiotic processes (i.e. passive subsidies). We first propose that animal movement patterns can create similar ecological effects (i.e. press and pulse disturbances) in recipient ecosystems, which can be equal in magnitude to or greater than those of passive subsidies. We then highlight three key behavioural features distinguishing active subsidies. First, organisms can transport nutrients counter-directionally to abiotic forces and potential energy gradients (e.g. upstream). Second, unlike passive subsidies, organisms respond to the patterns of nutrients that they generate. Third, animal agents interact with each other. The latter two features can form positive- or negative-feedback loops, creating patterns in space or time that can reinforce nutrient hotspots in places of mass aggregations and/or create lasting impacts within ecosystems. Because human-driven changes can affect both the space-use of active subsidy species and their composition at both population (i.e. individual variation) and community levels (i.e. species interactions), predicting patterns in nutrient flows under future modified environmental conditions depends on understanding the behavioural mechanisms that underlie active subsidies and variation among agents' contributions. We conclude by advocating for the integration of animal behaviour, animal movement data, and individual variation into future conservation efforts in order to provide more accurate and realistic assessments of changing ecosystem function.


Assuntos
Comportamento Animal/fisiologia , Nutrientes/fisiologia , Animais , Aves/fisiologia , Conservação dos Recursos Naturais , Ecossistema , Florestas , Insetos Vetores/fisiologia , Lagos , Nutrientes/provisão & distribuição , Oceanos e Mares , Rios , Fatores de Tempo , Vento
15.
Ecology ; 100(6): e02705, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916390

RESUMO

Although many studies have investigated plant growth in the context of episodic herbivory and pressed resource availability, relatively few have examined how plant growth is affected by pulsed resources and chronic herbivory. Periodical cicada (Magicicada spp.) adults represent a pulsed detrital subsidy that fertilizes plants, and live cicada nymphs are long-lived root-feeding herbivores. Previous studies of cicada herbivory effects have been inconclusive, and previous studies of cicada-mediated fertilization did not examine effects on trees, or on a multiyear timescale. Here, we describe the results of a 3-yr experiment that factorially manipulated the presence and absence of cicada fertilization and herbivory in a population of 100 American sycamore (Platanus occidentalis) trees. We found that cicada fertilization strongly increased tree growth in the year of emergence, creating differences in tree size that persisted at least 2 yr later. By comparison, we did not detect reductions in tree growth associated with cicada herbivory in any year of this experiment. However, cicada herbivory reduced the densities of, and damage from, other aboveground herbivores. These results suggest that cicadas affect the size structure of forests over multiple years, and raise questions about how cicada-mediated fertilization and herbivory will affect tree growth over longer timescales.


Assuntos
Hemípteros , Árvores , Animais , Herbivoria
16.
Ecology ; 99(10): 2187-2195, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30066397

RESUMO

Phenological shifts have been observed in a wide range of taxa, but the fitness consequences of these shifts are largely unknown, and we often lack experimental studies to assess their population-level and evolutionary consequences. Here, we describe an experimental study to determine the fitness consequences of phenological shifts in blue orchard bee (Osmia lignaria) emergence, compare the measured seasonal fitness landscape with observed phenology in the unmanipulated population, and assess seasonal variation in key factors related to reproduction, foraging, and brood parasitism that were expected to affect the shape of the fitness landscape. By tracking individually marked females, we were able to estimate the lifetime fitness impacts of phenological advances and delays. We also measured parasitism risk, floral resource use, and nesting behavior to understand how each varies seasonally, and their combined effects on realized fitness. Survival to nesting decreased non-monotonically throughout the season, with a 20.4% decline in survival rates between the first and second cohorts. The total reproductive output per maternal bee was 14.9% higher in the second cohort compared to the first, and 161% higher in the second cohort compared to the third. Combining seasonal patterns in survival and reproductive output, experimentally advanced females showed 30.6% higher fitness than bees released at the historic peak. In contrast, the nesting phenology of unmanipulated bees showed nearly equal numbers of nesting attempts in the first two cohorts. Both increased resource availability and reduced parasitism risk favored earlier emergence. These results are consistent with a population experiencing directional selection for earlier emergence, adaptive bet-hedging, or developmental constraints. Our study offers insight into the fitness consequences of phenological shifts, the mechanisms affecting the fitness consequences of phenological shifts in a community context, and the potential for adaptive responses to climate change.


Assuntos
Comportamento de Nidação , Simbiose , Animais , Abelhas , Mudança Climática , Feminino , Reprodução , Estações do Ano
17.
Ecol Evol ; 7(24): 10701-10709, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29299250

RESUMO

Resource pulses are brief periods of unusually high resource abundance. While population and community responses to resource pulses have been relatively well studied, how individual consumers respond to resource pulses has received less attention. Local consumers are often the first to respond to a resource pulse, and the form and timing of individual responses may influence how the effects of the pulse are transmitted throughout the community. Previous studies in Bahamian food webs have shown that detritivores associated with pulses of seaweed wrack provide an alternative prey source for lizards. When seaweed is abundant, lizards (Anolis sagrei) shift to consuming more marine-derived prey and increase in density, which has important consequences for other components of the food web. We hypothesized that the diet shift requires individuals to alter their habitat use and foraging activity and that such responses may happen very rapidly. In this study, we used recorded video observations to investigate the immediate responses of lizards to an experimental seaweed pulse. We added seaweed to five treatment plots for comparison with five control plots. Immediately after seaweed addition, lizards decreased average perch height and increased movement rate, but these effects persisted for only 2 days. To explore the short-term nature of the response, we used our field data to parametrize heuristic Markov chain models of perch height as a function of foraging state. These models suggest a "Synchronized-satiation Hypothesis," whereby lizards respond synchronously and feed quickly to satiation in the presence of a subsidy (causing an initial decrease in average perch height) and then return to the relative safety of higher perches. We suggest that the immediate responses of individual consumers to resource pulse events can provide insight into the mechanisms by which these consumers ultimately influence community-level processes.

18.
Ecology ; 97(2): 427-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27145617

RESUMO

Ecosystem engineers, organisms that modify the physical environment, are generally thought to increase diversity by facilitating species that benefit from engineered habitats. Recent theoretical work, however, suggests that ecosystem engineering could initiate cascades of trophic interactions that shape community structure in unexpected ways, potentially having negative indirect effects on abundance and diversity in components of the community that do not directly interact with the habitat modifications. We tested the indirect effects of a gall-forming wasp on arthropod communities in surrounding unmodified foliage. We experimentally removed all senesced galls from entire trees during winter and sampled the arthropod community on foliage after budburst. Gall removal resulted in 59% greater herbivore density, 26% greater herbivore richness, and 27% greater arthropod density five weeks after budburst. Gall removal also reduced the differences in community composition among trees (i.e., reduced beta diversity), even when accounting for differences in richness. The community inside galls during winter and through the growing season was dominated by jumping spiders (Salticidae; 0.87 ± 0.12 spiders per gall). We suggest that senesced galls provided habitat for spiders, which suppressed herbivorous arthropods and increased beta diversity by facilitating assembly of unusual arthropod communities. Our results demonstrate that the effects of habitat modification by ecosystem engineers can extend beyond merely providing habitat for specialists; the effects can propagate far enough to influence the structure of communities that do not directly interact with habitat modifications.


Assuntos
Biodiversidade , Cadeia Alimentar , Herbivoria , Insetos/fisiologia , Quercus , Animais , Tumores de Planta , Densidade Demográfica , Comportamento Predatório , Fatores de Tempo
19.
Science ; 351(6272): 457, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26823418

RESUMO

Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.


Assuntos
Biodiversidade , Pradaria , Desenvolvimento Vegetal
20.
Nat Plants ; 1: 15080, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27250253

RESUMO

Terrestrial ecosystem productivity is widely accepted to be nutrient limited(1). Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)(2,3), the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized(4-8). However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+µ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+µ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA