Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Adv Mater ; : e2407923, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39081109

RESUMO

Solid-state lithium-ion batteries (SSLIBs) have been considered as the priority candidate for next-generation energy storage system, due to their advantages in safety and energy density compare with conventional liquid electrolyte systems. However, the introduction of numerous solid-solid interfaces results in a series of issues, hindering the further development of SSLIBs. Therefore, a thorough understanding on the interfacial issues is essential to promote the practical applications for SSLIBs. In this review, the interface issues are discussed from the perspective of transportation mechanism of electrons and lithium ions, including internal interfaces within cathode/anode composites and solid electrolytes (SEs), as well as the apparent electrode/SEs interfaces. The corresponding interface modification strategies, such as passivation layer design, conductive binders, and thermal sintering methods, are comprehensively summarized. Through establishing the correlation between carrier transport network and corresponding battery electrochemical performance, the design principles for achieving a selective carrier transport network are systematically elucidated. Additionally, the future challenges are speculated and research directions in tailoring interfacial structure for SSLIBs. By providing the insightful review and outlook on interfacial charge transfer, the industrialization of SSLIBs are aimed to promoted.

2.
J Phys Chem Lett ; 15(25): 6520-6527, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38874524

RESUMO

As one of the most significant challenges in solid-state batteries, thorough investigation is necessary on the formation process of lithium dendrites in solid-state electrolytes. Here, we reveal that the growth of lithium dendrites in solid electrolytes is a physical-electrochemical reaction process caused by injected lithium ions and electron carriers, which requires a low electrochemical potential. A unique energy band specific to injected Li ions is identified at the bottom of the conduction band, which can be occupied by electron carriers from low-potential electrodes, leading to dendrite formation. In this case, it is quantitatively determined that the employed anodes with higher working voltages (>0.2 V versus Li/Li+) can effectively prevent dendrite formation. Moreover, lithium dendrite formation exclusively occurs during the charging process (i.e., lithium plating), where lithium ions meet electrons at mixed conductive grain boundaries under highly reductive potentials. The proposed model has significant scientific significance and application value.

3.
Nat Commun ; 15(1): 3399, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649376

RESUMO

The van der Waals antiferromagnetic topological insulator MnBi2Te4 represents a promising platform for exploring the layer-dependent magnetism and topological states of matter. Recently observed discrepancies between magnetic and transport properties have aroused controversies concerning the topological nature of MnBi2Te4 in the ground state. In this article, we demonstrate that fabrication can induce mismatched even-odd layer dependent magnetotransport in few-layer MnBi2Te4. We perform a comprehensive study of the magnetotransport properties in 6- and 7-septuple-layer MnBi2Te4, and reveal that both even- and odd-number-layer device can show zero Hall plateau phenomena in zero magnetic field. Importantly, a statistical survey of the optical contrast in more than 200 MnBi2Te4 flakes reveals that the zero Hall plateau in odd-number-layer devices arises from the reduction of the effective thickness during the fabrication, a factor that was rarely noticed in previous studies of 2D materials. Our finding not only provides an explanation to the controversies regarding the discrepancy of the even-odd layer dependent magnetotransport in MnBi2Te4, but also highlights the critical issues concerning the fabrication and characterization of 2D material devices.

4.
Front Immunol ; 15: 1254516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455060

RESUMO

There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.


Assuntos
Perda do Osso Alveolar , Periodontite , Humanos , Porphyromonas gingivalis , Inflamação , Fusobacterium nucleatum/fisiologia
5.
ACS Nano ; 18(8): 6600-6611, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353590

RESUMO

Coupling Ni-rich layered oxide cathodes with Si-based anodes is one of the most promising strategies to realize high-energy-density Li-ion batteries. However, unstable interfaces on both cathode and anode sides cause continuous parasitic reactions, resulting in structural degradation and capacity fading of full cells. Herein, lithium tetrafluoro(oxalato) phosphate is synthesized and applied as a multifunctional electrolyte additive to mitigate irreversible volume swing of the SiOx anode and suppress undesirable interfacial evolution of the LiNi0.83Co0.12Mn0.05O2 (NCM) cathode simultaneously, resulting in improved cycle life. Benefiting from its desirable redox thermodynamics and kinetics, the molecularly tailored additive facilitates matching interphases consisting of LiF, Li3PO4, and P-containing macromolecular polymer on both the NCM cathode and SiOx anode, respectively, modulating interfacial chemo-mechanical stability as well as charge transfer kinetics. More encouragingly, the proposed strategy enables 4.4 V 21700 cylindrical batteries (5 Ah) with excellent cycling stability (92.9% capacity retention after 300 cycles) under practical conditions. The key finding points out a fresh perspective on interfacial optimization for high-energy-density battery systems.

6.
Front Bioeng Biotechnol ; 12: 1338539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361792

RESUMO

Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.

7.
Sci Adv ; 10(4): eadn0479, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277463

RESUMO

Antiferromagnetic spintronics have attracted wide attention due to its great potential in constructing ultradense and ultrafast antiferromagnetic memory that suits modern high-performance information technology. The electrical 180° switching of Néel vector is a long-term goal for developing electrical-controllable antiferromagnetic memory with opposite Néel vectors as binary "0" and "1." However, the state-of-art antiferromagnetic switching mechanisms have long been limited for 90° or 120° switching of Néel vector, which unavoidably require multiple writing channels that contradict ultradense integration. Here, we propose a deterministic switching mechanism based on spin-orbit torque with asymmetric energy barrier and experimentally achieve electrical 180° switching of spin-splitting antiferromagnet Mn5Si3. Such a 180° switching is read out by the Néel vector-induced anomalous Hall effect. On the basis of our writing and readout methods, we fabricate an antiferromagnet device with electrical-controllable high- and low-resistance states that accomplishes robust write and read cycles. Besides fundamental advance, our work promotes practical spin-splitting antiferromagnetic devices based on spin-splitting antiferromagnet.

8.
Small ; 20(12): e2307446, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37941471

RESUMO

The zinc dendrite growth generally relies upon a "positive-feedback" mode, where the fast-grown tips receive higher current densities and ion fluxes. In this study, a self-limiting polyacrylamide (PAM) hydrogel that presents negative feedback to dendrite growth is developed. The monomers are purposefully polymerized at the dendrite tips, then the hydrogel reduces the local current density and ion flux by limiting zinc ion diffusion with abundant functional groups. As a consequence, the accumulation at the dendrite tips is restricted, and the (002) facets-oriented deposition is achieved. Moreover, the refined porous structure of the gel enhances Coulombic Efficiency by reducing water activity. Due to the synergistic effects, the zinc anodes perform an ultralong lifetime of 5100 h at 0.5 mA cm-2 and 1500 h at 5 mA cm-2, which are among the best records for PAM-based gel electrolytes. Further, the hydrogel significantly prolongs the lifespan of zinc-ion batteries and capacitors by dozens of times. The developed in situ hydrogel presents a feasible and cost-effective way to commercialize zinc anodes and provides inspiration for future research on dendrite suppression using the negative-feedback mechanism.

9.
Sci Bull (Beijing) ; 68(22): 2734-2742, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863774

RESUMO

Atomically thin van der Waals magnetic materials have not only provided a fertile playground to explore basic physics in the two-dimensional (2D) limit but also created vast opportunities for novel ultrafast functional devices. Here we systematically investigate ultrafast magnetization dynamics and spin wave dynamics in few-layer topological antiferromagnetic MnBi2Te4 crystals as a function of layer number, temperature, and magnetic field. We find laser-induced (de)magnetization processes can be used to accurately track the distinct magnetic states in different magnetic field regimes, including showing clear odd-even layer number effects. In addition, strongly field-dependent AFM magnon modes with tens of gigahertz frequencies are optically generated and directly observed in the time domain. Remarkably, we find that magnetization and magnon dynamics can be observed in not only the time-resolved magneto-optical Kerr effect but also the time resolved reflectivity, indicating strong correlation between the magnetic state and electronic structure. These measurements present the first comprehensive overview of ultrafast spin dynamics in this novel 2D antiferromagnet, paving the way for potential applications in 2D antiferromagnetic spintronics and magnonics as well as further studies of ultrafast control of both magnetization and topological quantum states.

10.
Nat Commun ; 14(1): 6048, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770484

RESUMO

As one of the most promising alternatives to graphite negative electrodes, silicon oxide (SiOx) has been hindered by its fast capacity fading. Solid electrolyte interphase (SEI) aging on silicon SiOx has been recognized as the most critical yet least understood facet. Herein, leveraging 3D focused ion beam-scanning electron microscopy (FIB-SEM) tomographic imaging, we reveal an exceptionally characteristic SEI microstructure with an incompact inner region and a dense outer region, which overturns the prevailing belief that SEIs are homogeneous structure and reveals the SEI evolution process. Through combining nanoprobe and electron energy loss spectroscopy (EELS), it is also discovered that the electronic conductivity of thick SEI relies on the percolation network within composed of conductive agents (e.g., carbon black particles), which are embedded into the SEI upon its growth. Therefore, the free growth of SEI will gradually attenuate this electron percolation network, thereby causing capacity decay of SiOx. Based on these findings, a proof-of-concept strategy is adopted to mechanically restrict the SEI growth via applying a confining layer on top of the electrode. Through shedding light on the fundamental understanding of SEI aging for SiOx anodes, this work could potentially inspire viable improving strategies in the future.

11.
Nano Lett ; 23(17): 7914-7920, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642561

RESUMO

Metal halide perovskites make up a promising class of materials for semiconductor spintronics. Here we report a systematic investigation of coherent spin precession, spin dephasing and spin relaxation of electrons and holes in two hybrid organic-inorganic perovskites MA0.3FA0.7PbI3 and MA0.3FA0.7Pb0.5Sn0.5I3 using time-resolved Faraday rotation spectroscopy. With applied in-plane magnetic fields, we observe robust Larmor spin precession of electrons and holes that persists for hundreds of picoseconds. The spin dephasing and relaxation processes are likely to be sensitive to the defect levels. Temperature-dependent measurements give further insights into the spin relaxation channels. The extracted electron Landé g-factors (3.75 and 4.36) are the biggest among the reported values in inorganic or hybrid perovskites. Both the electron and hole g-factors shift dramatically with temperature, which we propose to originate from thermal lattice vibration effects on the band structure. These results lay the foundation for further design and use of lead- and tin-based perovskites for spintronic applications.

12.
Sci Bull (Beijing) ; 68(15): 1632-1639, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429776

RESUMO

Atomically thin oxide magnetic materials are highly desirable due to the promising potential to integrate two-dimensional (2D) magnets into next-generation spintronics. Therefore, 2D oxide magnetism is expected to be effectively tuned by the magnetic and electrical fields, holding prospective for future low-dissipation electronic devices. However, the electric-field control of 2D oxide monolayer magnetism has rarely been reported. Here, we present the realization of 2D monolayer magnetism in oxide (SrRuO3)1/(SrTiO3)N (N = 1, 3) superlattices that shows an efficient and reversible phase transition through electric-field controlled proton (H+) evolution. By using ionic liquid gating to modulate the proton concentration in (SrRuO3)1/(SrTiO3)1 superlattice, an electric-field induced metal-insulator transition was observed, along with gradually suppressed magnetic ordering and modulated magnetic anisotropy. Theoretical analysis reveals that proton intercalation plays a crucial role in both electronic and magnetic phase transitions. Strikingly, SrTiO3 layers can act as a proton sieve, which have a significant influence on proton evolution. Our work stimulates the tuning functionality of 2D oxide monolayer magnetism by voltage control, providing potential for future energy-efficient electronics.

13.
Small ; 19(46): e2305326, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501332

RESUMO

Composite solid electrolytes (CSEs) consisting of polyethylene oxide (PEO) matrix and active inorganic fillers have shown great potential for practical applications. However, mechanisms of how different active fillers enhance ion transport in CSEs still remain inconclusive. In this work, the component dependencies of ionic conductivity of PEO-based CSEs are investigated by comparing two widely investigated active fillers: NASICON-type (LATP) and garnet-type (LLZTO). In terms of ionic conductivity, the optimum ratios are strikingly different for LLZTO (10 wt%) and LATP (50 wt%). Through experimental and computational studies, it is demonstrated that the high affinity between LATP and PEO facilitates unhindered interfacial Li+ transfer so that LATP functions as a bulk-active filler to provide additional inorganic ion pathways. By contrast, Li+ transfer between LLZTO and PEO is found to be sluggish. Instead, LLZTO mainly improves ionic conductivity by dissociating lithium salt, making it a surface-active filler. Through categorizing active fillers based on their Li+ conductive mechanisms, this work provides new understanding and guidelines for componential design and optimization of solid composite electrolytes.

14.
ACS Nano ; 17(6): 5570-5578, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36895079

RESUMO

Effective harvest of electrochemical energy from insulating compounds serves as the key to unlocking the potential capacity from many materials that otherwise could not be exploited for energy storage. Herein, an effective strategy is proposed by employing LiCoO2, a widely commercialized positive electrode material in Li-ion batteries, as an efficient redox mediator to catalyze the decomposition of Na2CO3 via an intercalating mechanism. Differing from traditional redox mediation processes where reactions occur on the limited surface sites of catalysts, the electrochemically delithiated Li1-xCoO2 forms NayLi1-xCoO2 crystals, which act as a cation intercalating catalyzer that directs Na+ insertion-extraction and activates the reaction of Na2CO3 with carbon. Through altering the route of the mass transport process, such redox centers are delocalized throughout the bulk of LiCoO2, which ensures maximum active reaction sites. The decomposition of Na2CO3 thus accelerated significantly reduces the charging overpotential in Na-CO2 batteries; meanwhile, Na compensation can also be achieved for various Na-deficient cathode materials. Such a surface-induced catalyzing mechanism for conversion-type reactions, realized via cation intercalation chemistry, expands the boundary for material discovery and makes those conventionally unfeasible a rich source to explore for efficient utilization of chemical energy.

15.
Sci Bull (Beijing) ; 68(4): 408-416, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36725396

RESUMO

Despite the high theoretical capacity, silicon (Si) anode suffers from dramatical capacity loss, due to its massive volume swings (up to 300%) during cycling. Hence, thorough understanding of the structural evolution mechanism is necessary and essential for performance optimization of Si anode. Herein, a multi-scale three-dimensional (3D) image reconstruction technique is firstly applied to visualize the structural evolution process of Si anodes. Three key components (Si particles, inactive components, and voids) in the electrode are quantitatively analyzed by the focused ion beam and scanning electron microscope (FIB-SEM) technology. Furthermore, the average sizes of Si particles were run statistics during the cycling. By combining the componential observation within the electrode (macroscopic information) and the 3D models of the particle with solid electrolyte interphase (SEI) layer (microscopic information), the failure mechanism of Si anode is vividly demonstrated. This work establishes a new methodology to quantitatively analyze the structural and compositional evolution of Si anode, which could be further applied for the studies of many other electrode materials with similar issues.

16.
Nanomicro Lett ; 14(1): 191, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121521

RESUMO

Poly(ethylene oxide) (PEO)-based solid polymer electrolyte (SPE) is considered as a promising solid-state electrolyte for all-solid-state lithium batteries (ASSLBs). Nevertheless, the poor interfacial stability with high-voltage cathode materials (e.g., LiCoO2) restricts its application in high energy density solid-state batteries. Herein, high-voltage stable Li3AlF6 protective layer is coated on the surface of LiCoO2 particle to improve the performance and investigate the failure mechanism of PEO-based ASSLBs. The phase transition unveils that chemical redox reaction occurs between the highly reactive LiCoO2 surface and PEO-based SPE, resulting in structure collapse of LiCoO2, hence the poor cycle performance of PEO-based ASSLBs with LiCoO2 at charging voltage of 4.2 V vs Li/Li+. By sharp contrast, no obvious structure change can be found at the surface of Li3AlF6-coated LiCoO2, and the original layered phase was well retained. When the charging voltage reaches up to 4.5 V vs Li/Li+, the intensive electrochemical decomposition of PEO-based SPE occurs, leading to the constant increase of cell impedance and directly causing the poor performance. This work not only provides important supplement to the failure mechanism of PEO-based batteries with LiCoO2, but also presents a universal strategy to retain structure stability of cathode-electrolyte interface in high-voltage ASSLBs.

17.
Front Immunol ; 13: 955441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990678

RESUMO

Background and objective: This study aimed to identify crosstalk genes between periodontitis (PD) and osteoporosis (OP) and potential relationships between crosstalk and pyroptosis-related genes. Methods: PD and OP datasets were downloaded from the GEO database and were performed differential expression analysis to obtain DEGs. Overlapping DEGs got crosstalk genes linking PD and OP. Pyroptosis-related genes were obtained from literature reviews. Pearson coefficients were used to calculate crosstalk and pyroptosis-related gene correlations in the PD and OP datasets. Paired genes were obtained from the intersection of correlated genes in PD and OP. PINA and STRING databases were used to conduct the crosstalk-bridge-pyroptosis genes PPI network. The clusters in which crosstalk and pyroptosis-related genes were mainly concentrated were defined as key clusters. The key clusters' hub genes and the included paired genes were identified as key crosstalk-pyroptosis genes. Using ROC curve analysis and XGBoost screened key genes. PPI subnetwork, gene-biological process and gene-pathway networks were constructed based on key genes. In addition, immune infiltration was analyzed on the PD dataset using the CIBERSORT algorithm. Results: A total of 69 crosstalk genes were obtained. 13 paired genes and hub genes TNF and EGFR in the key clusters (cluster2, cluster8) were identified as key crosstalk-pyroptosis genes. ROC and XGBoost showed that PRKCB, GSDMD, ARMCX3, and CASP3 were more accurate in predicting disease than other key crosstalk-pyroptosis genes while better classifying properties as a whole. KEGG analysis showed that PRKCB, GSDMD, ARMCX3, and CASP3 were involved in neutrophil extracellular trap formation and MAPK signaling pathway pathways. Immune infiltration results showed that all four key genes positively correlated with plasma cells and negatively correlated with T cells follicular helper, macrophages M2, and DCs. Conclusion: This study shows a joint mechanism between PD and OP through crosstalk and pyroptosis-related genes. The key genes PRKCB, GSDMD, ARMCX3, and CASP3 are involved in the neutrophil extracellular trap formation and MAPK signaling pathway, affecting both diseases. These findings may point the way to future research.


Assuntos
Osteoporose , Periodontite , Caspase 3/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Humanos , Aprendizado de Máquina , Osteoporose/genética , Periodontite/genética , Mapas de Interação de Proteínas/genética , Piroptose/genética
18.
Acc Chem Res ; 55(15): 2088-2102, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35866547

RESUMO

ConspectusSilicon-based anode materials have become a research hot spot as the most promising candidates for next-generation high-capacity lithium-ion batteries. However, the irreversible degradation of the conductive network in the anode and the resultant dramatic capacity loss have become two ultimate challenges that stem from inherent characteristics of the Si-based materials, including poor conductivity and massive volume changes (up to 300%) during cycling. Apart from optimization of the active materials, one effective way to stabilize high-capacity Si-based anodes is by designing polymeric binders to reinforce the conductive networks during repeated charge and discharge processes. As an inactive component in the electrode, the binder not only holds other components (e.g., active materials, conductive agents, and current collectors) together to maintain the mechanical integrity of the electrode but also serves as a thickener to facilitate the homogeneous distribution of particles. Therefore, binders play a key role in Si-based anodes by maintaining the integrity of conductive networks in the electrode.In this Account, on the basis of the extensive binder-related work on Si-based anodes since the 2000s, efforts made on maintaining the conductive network can be categorized into two main strategies: (1) stabilization of the primary conductive network (which generally refers to conductive agents) by enhancing the binding strength and resilience of the binding between electrode components (i.e., Si particles, conducting agents, and current collectors) via various interactions (e.g., dipolar interactions and covalent bonds) and (2) construction of the secondary conductive network by employing conductive binders, which serve as a molecular-level conductive layer on active materials. In this sense, functional groups in binders can be divided into two categories: mechanical structural units and conductive structural units. On the one hand, functional groups with strong polarities (e.g., -OH, -COOH, -NH2, and -CONH-) generally serve as binding structural units because of their bonding tendencies; on the other hand, exhibiting high electronic conductivity, conjugated functional groups (e.g., -C4H4O2S-, -C16H9, -C13H8-, and -C12H8N-) are commonly found in conductive binders. Through establishing the correlation between structural units and their corresponding properties, we systematically summarize the optimization strategies and design principles of binders to achieve a robust conductive network in Si-based anodes. In addition, integration of desirable mechanical properties and high conductivity into the binder in order to achieve a multidimensionally stable conductive network is proposed. Through an insightful retrospective and prospective on binders, a key electrode component, we hope to provide a fresh perspective on performance optimization of Si-based anodes.

19.
Adv Mater ; 34(30): e2202745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657036

RESUMO

The key to breaking through the capacity limitation imposed by intercalation chemistry lies in the ability to harness more active sites that can reversibly accommodate more ions (e.g., Li+ ) and electrons within a finite space. However, excessive Li-ion insertion into the Li layer of layered cathodes results in fast performance decay due to the huge lattice change and irreversible phase transformation. In this study, an ultrahigh reversible capacity is demonstrated by a layered oxide cathode purely based on manganese. Through a wealth of characterizations, it is clarified that the presence of low-content Li2 MnO3 domains not only reduces the amount of irreversible O loss; but also regulates Mn migration in LiMnO2 domains, enabling elastic lattice with high reversibility for tetrahedral sites Li-ion storage in Li layers. This work utilizes bulk cation disorder to create stable Li-ion-storage tetrahedral sites and an elastic lattice for layered materials, with a reversible capacity of 600 mA h g-1 , demonstrated in th range 0.6-4.9 V versus Li/Li+ at 10 mA g-1 . Admittedly, discharging to 0.6 V might be too low for practical use, but this exploration is still of great importance as it conceptually demonstrates the limit of Li-ions insertion into layered oxide materials.

20.
Small Methods ; 6(5): e2101591, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266326

RESUMO

Due to the severe volume variations during electrochemical processes, Si-based anodes suffer from poor cycling performance as the result of a collapsed conductive network. In this regard, a key strategy for fully exploiting the capacity potential of Si-based anodes is to construct a robust conductive network through rational binder design. In this work, a bio-inspired conductive binder (PFPQDA) is designed by introducing dopamine-functionalized fluorene structure units (DA) into a conductivity enhanced polyfluorene-typed copolymer (PFPQ) to enhance its mechanical properties. Through constructing hierarchical binding networks and resilient electron transportations within both nano-sized Si and micro-sized SiOx electrodes via interweaved interactions, the PFPQDA successfully suppresses the electrode expansion and maintains the integrity of conductive pathways. Consequently, owing to the favorable properties of PFPQDA, Si-based anodes exhibit improved cycling performance and rate capability with an areal capacity over 2.5 mAh cm-2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA