Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Clin Transl Med ; 14(3): e1623, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488468

RESUMO

BACKGROUND: Alzheimer's disease (AD) and related Tauopathies are characterised by the pathologically hyperphosphorylated and aggregated microtubule-associated protein Tau, which is accompanied by neuroinflammation mediated by activated microglia. However, the role of Tau pathology in microglia activation or their causal relationship remains largely elusive. METHODS: The levels of nucleotide-binding oligomerisation domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) acetylation and inflammasome activation in multiple cell models with Tau proteins treatment, transgenic mice with Tauopathy, and AD patients were measured by Western blotting and enzyme-linked immunosorbent assay. In addition, the acetyltransferase activity of Tau and NLRP3 acetylation sites were confirmed using the test-tube acetylation assay, co-immunoprecipitation, immunofluorescence (IF) staining, mass spectrometry and molecular docking. The Tau-overexpressing mouse model was established by overexpression of human Tau proteins in mouse hippocampal CA1 neurons through the adeno-associated virus injection. The cognitive functions of Tau-overexpressing mice were assessed in various behavioural tests, and microglia activation was analysed by Iba-1 IF staining and [18F]-DPA-714 positron emission tomography/computed tomography imaging. A peptide that blocks the interaction between Tau and NLRP3 was synthesised to determine the in vitro and in vivo effects of Tau-NLRP3 interaction blockade on NLRP3 acetylation, inflammasome activation, microglia activation and cognitive function. RESULTS: Excessively elevated NLRP3 acetylation and inflammasome activation were observed in 3xTg-AD mice, microtubule-associated protein Tau P301S (PS19) mice and AD patients. It was further confirmed that mimics of 'early' phosphorylated-Tau proteins which increase at the initial stage of diseases with Tauopathy, including TauT181E, TauS199E, TauT217E and TauS262E, significantly promoted Tau-K18 domain acetyltransferase activity-dependent NLRP3 acetylation and inflammasome activation in HEK293T and BV-2 microglial cells. In addition, Tau protein could directly acetylate NLRP3 at the K21, K22 and K24 sites at its PYD domain and thereby induce inflammasome activation in vitro. Overexpression of human Tau proteins in mouse hippocampal CA1 neurons resulted in impaired cognitive function, Tau transmission to microglia and microgliosis with NLRP3 acetylation and inflammasome activation. As a targeted intervention, competitive binding of a designed Tau-NLRP3-binding blocking (TNB) peptide to block the interaction of Tau protein with NLRP3 inhibited the NLRP3 acetylation and downstream inflammasome activation in microglia, thereby alleviating microglia activation and cognitive impairment in mice. CONCLUSIONS: In conclusion, our findings provide evidence for a novel role of Tau in the regulation of microglia activation through acetylating NLRP3, which has potential implications for early intervention and personalised treatment of AD and related Tauopathies.


Assuntos
Doença de Alzheimer , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Células HEK293 , Simulação de Acoplamento Molecular , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Camundongos Transgênicos , Acetiltransferases
2.
Cell Death Dis ; 15(1): 50, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221520

RESUMO

Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Células Matadoras Naturais , Neoplasias/patologia , Imunoterapia , Imunoterapia Adotiva
3.
Int Forum Allergy Rhinol ; 14(4): 845-849, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37624074

RESUMO

KEY POINTS: Nasal tight junction module score correlates negatively to allergy module score in COVID-19. Omicron variant may slow-down tight junction restoration in patients with AR.


Assuntos
COVID-19 , Rinite Alérgica , Humanos , Junções Íntimas , Mucosa Nasal , SARS-CoV-2 , Rinite Alérgica/terapia
4.
Oncol Lett ; 26(5): 472, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37809044

RESUMO

Numerous agents such as near-infrared dyes that are characterized by specialized cancer imaging and cytotoxicity effects have key roles in cancer diagnosis and therapy via molecularly targeting special biological tissues, organelles and processes. In the present study, a novel fluorescent compound was demonstrated to inhibit cancer cell proliferation in a zebrafish model with slight in vivo toxicity. Further studies demonstrated selective staining of cancer cells and even putative cancer stem cells via accumulation of the dye in the mitochondria of cancer cells, compared with normal cells. Moreover, this compound was also used to image cancer cells in vivo using a zebrafish model. The compound displayed no apparent toxicity to the host animal. Overall, the data indicated that this compound was worthy of further evaluation due to its low toxicity and selective cancer cell imaging and killing effects. It could be a useful tool in cancer research.

5.
Gene ; 888: 147750, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37657690

RESUMO

OBJECTIVE: The Janus kinase/signal transducer and transporter activator (JAK/STAT) signaling pathway plays crucial roles in lipid metabolism, glucose metabolism and cell senescence, suggesting that they are potential candidate genes affecting growth traits in animals. The present study aimed to evaluate the association between InDels in the JAK/STAT pathway and growth traits of four Chinese sheep breeds, including Tong sheep, Hu sheep, Small-tailed Han sheep and Lanzhou fat-tailed sheep. RESULTS: Seventy-six indel loci of 11 genes in JAK/STAT were detected, and three genotypes were selected at four loci by PCR amplification, electrophoresis and sequencing, including one locus in STAT3, one locus in STAT5A, and two loci in JAK1. The Correlation analysis indicated that there was no significant correlation between STAT3 and growth traits in four sheep breeds (P > 0.05); STAT5A was significantly associated with body height, rump width and tube circumference in Hu sheep and body length in Tong sheep (P < 0.05); JAK1 was significantly correlated with body height, body oblique length, cross height and tube circumference in Hu sheep (P < 0.05) and body oblique length, cross height and tube circumference in small-tailed Han sheep (P < 0.05). CONCLUSION: Overall, our results indicated a potential association between the growth traits of sheep and the InDels of JAK1 and STAT5A.


Assuntos
Janus Quinases , Transdução de Sinais , Ovinos/genética , Animais , Janus Quinases/genética , Transdução de Sinais/genética , Fatores de Transcrição STAT/genética , Fenótipo , Genótipo
6.
J Neuroimmunol ; 379: 578102, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196595

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia and there are no effective treatments for this disease currently. Circadian rhythm disruption (CRD) is a hallmark of modern society that appears to be on the rise. It is well reported that AD is associated with disrupted circadian functioning and CRD can impair cognitive function. However, the cellular mechanisms underlying CRD-associated cognitive decline remain elusive. In this study, we investigated whether microglia are involved in CRD-induced cognitive decline. We established experimental 'jet lag' (phase delay of the light/dark cycles)-induced CRD mouse model and observed significant impairment of spatial learning and memory function in these mice. In the brain, CRD resulted in neuroinflammation, which was characterized by microglia activation and increased pro-inflammatory cytokine production, impairments in neurogenesis and reduction of synaptic proteins in the hippocampus. Interestingly, elimination of microglia with the colony stimulating factor-1 receptor inhibitor PLX3397 prevented CRD-induced neuroinflammation, cognitive decline, impairment of neurogenesis and loss of synaptic proteins. These findings collectively suggest that microglia activation plays a key role in CRD-induced cognitive deficit most likely through neuroinflammation-mediated impairments in adult neurogenesis and synapses.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doenças Neuroinflamatórias , Microglia/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Memória , Hipocampo , Doença de Alzheimer/metabolismo , Ritmo Circadiano , Modelos Animais de Doenças
7.
J Neurochem ; 163(5): 406-418, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36189686

RESUMO

Circadian rhythm disruption (CRD) is a potential risk factor for developing Alzheimer's disease (AD). However, the mechanistic link between CRD and AD is still not fully understood. CRD may lead to intestinal barrier impairment. Several studies in animals and humans suggest a connection between gut microbiota disturbance, intestinal barrier damage and neurodegenerative diseases. In this study, we investigated the effect of CRD on cognition in mice and explored the role of intestinal barrier and inflammatory responses in this process. CRD modulates the composition of gut microbiota, impairs intestinal barrier integrity, and induces both peripheral and central inflammation and cognitive impairment in mice. Rifaximin, a non-absorbable antibiotic which modulates the gut microbial composition and increases intestinal barrier integrity, effectively suppresses inflammatory responses, and rescues cognitive impairment induced by CRD. Furthermore, the impairment in hippocampal neurogenesis, tau hyperphosphorylation, and loss in synaptic proteins in CRD mice is also reversed by Rifaximin. These data identify that the impaired intestinal barrier integrity related to gut microbiota disturbance plays a key role in CRD-induced inflammatory responses and cognitive impairments in mice, and Rifaximin is effective in preventing CRD-induced cognitive deficit through protecting the gut barrier and ameliorating neuroinflammation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Camundongos , Animais , Humanos , Rifaximina/farmacologia , Ritmo Circadiano , Doenças Neuroinflamatórias , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle
8.
Biomed Pharmacother ; 150: 113012, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658246

RESUMO

Nasopharyngeal carcinoma (NPC) is a malignant tumor highly prevalent in Southeast Asia. The distant metastasis and disease recurrence are still unsolved clinical problems. In recent years, traditional Chinese medicine (TCM) monomers have become significantly attractive due to their advantages. Using high throughput drug sensitivity screening, we identified gambogic acid (GA) as a common TCM monomer displaying multiple anti-NPC effects. GA could effectively inhibit the proliferation of low differentiated cells and highly metastatic cells in NPC via inducing apoptosis and G2/M cell cycle arrest. In addition, GA obviously repressed the abilities of cell clone, migration, invasion, angiogenesis and represented satisfied synergistic effects combined with chemotherapy. Importantly, we found the elevated immune checkpoint CD47 stimulated after chemotherapy was dramatically impaired by GA treatment. Mechanically, the network pharmacology analyses unraveled that the oncogenic signaling pathways including STATs were rewired by GA treatment. Taken together, our study reveals a molecular basis and provides a rationale for GA application as the treatment regime in NPC therapy in future.


Assuntos
Neoplasias Nasofaríngeas , Recidiva Local de Neoplasia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Monitorização Imunológica , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Xantonas
9.
Bioinorg Chem Appl ; 2021: 9959634, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007265

RESUMO

Nasopharyngeal carcinoma (NPC) is a malignant tumor in southern China, and nano Traditional Chinese Medicine (TCM) represents great potential to cancer therapy. To predict the potential targets and mechanism of polyphyllin II against NPC and explore its possibility for the future nano-pharmaceutics of Chinese medicine monomers, network pharmacology was included in the present study. Totally, ninety-four common potential targets for NPC and polyphyllin II were discovered. Gene Ontology (GO) function enrichment analysis showed that biological processes and functions mainly concentrated on apoptotic process, protein phosphorylation, cytosol, protein binding, and ATP binding. In addition, the anti-NPC effects of polyphyllin II mainly involved in the pathways related to cancer, especially in the PI3K-Akt signaling indicated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The "drug-target-disease" network diagram indicated that the key genes were SRC, MAPK1, MAPK14, and AKT1. Taken together, this study revealed the potential drug targets and underlying mechanisms of polyphyllin II against NPC through modern network pharmacology, which provided a certain theoretical basis for the future nano TCM research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA