Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Science ; 384(6695): 557-563, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696573

RESUMO

Hydrogels are an attractive category of biointerfacing materials with adjustable mechanical properties, diverse biochemical functions, and good ionic conductivity. Despite these advantages, their application in electronics has been restricted because of their lack of semiconducting properties, and they have traditionally only served as insulators or conductors. We developed single- and multiple-network hydrogels based on a water-soluble n-type semiconducting polymer, endowing conventional hydrogels with semiconducting capabilities. These hydrogels show good electron mobilities and high on/off ratios, enabling the fabrication of complementary logic circuits and signal amplifiers with low power consumption and high gains. We demonstrate that hydrogel electronics with good bioadhesive and biocompatible interface can sense and amplify electrophysiological signals with enhanced signal-to-noise ratios.

2.
Mol Med Rep ; 29(6)2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38666538

RESUMO

Polycystic ovary syndrome (PCOS) is a globally prevalent gynecological disorder among women of childbearing age. The present study aimed to investigate the role of tenascin C (TNC) in PCOS and its potential mechanisms. Fasting blood glucose and serum insulin, the homeostasis model assessment of insulin resistance and the serum hormone levels were determined in PCOS rats. In addition, H&E staining was used for assessing pathology. In addition, the effects of TNC on oxidative stress and inflammation response in PCOS rat and cell models was assessed. Furthermore, the roles of TNC on KGN cell proliferation and apoptosis were determined employing EdU assay and flow cytometry. TLR4/NF­κB pathway­related proteins were measured using western blotting, immunofluorescence and immunohistochemistry. It was found that the mRNA and protein expression was upregulated in PCOS rats and in KGN cells induced by dihydrotestosterone (DHT). Knockdown of TNC relieved the pathological characteristics and the endocrine abnormalities of PCOS rats. Knockdown of TNC inhibited ovarian cell apoptosis, oxidative stress and inflammation in PCOS rats. Knockdown of TNC reversed the DHT­induced reduction in cell proliferation and increase in apoptosis in KGN cells. Furthermore, knockdown of TNC alleviated oxidative stress and inflammatory responses induced by DHT in KGN cells. Additionally, knockdown of TNC inhibited the toll­like receptor 4 (TLR4)/NF­κB signaling pathway in PCOS rats and DHT­treated KGN cells. In conclusion, knockdown of TNC could ameliorate PCOS in both rats and a cell model by inhibiting cell apoptosis, oxidative stress and inflammation via the suppression of the TLR4/NF­κB signaling pathway.


Assuntos
Apoptose , Proliferação de Células , NF-kappa B , Estresse Oxidativo , Síndrome do Ovário Policístico , Transdução de Sinais , Tenascina , Receptor 4 Toll-Like , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Síndrome do Ovário Policístico/genética , Feminino , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , NF-kappa B/metabolismo , Ratos , Tenascina/metabolismo , Tenascina/genética , Modelos Animais de Doenças , Ratos Sprague-Dawley , Resistência à Insulina , Humanos , Linhagem Celular
3.
Br J Haematol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38665119

RESUMO

Primary immune thrombocytopenia (ITP) is linked to specific pathogenic mechanisms, yet its relationship with mitophagy and ferroptosis is poorly understood. This study aimed to identify new biomarkers and explore the role of mitophagy and ferroptosis in ITP pathogenesis. Techniques such as differential analysis, Mfuzz expression pattern clustering, machine learning, gene set enrichment analysis, single-cell RNA sequencing (scRNA-seq) and immune infiltration analysis were employed to investigate the molecular pathways of pivotal genes. Two-sample Mendelian randomization (TSMR) assessed the causal effects in ITP. Key genes identified in the training set included GABARAPL1, S100A8, LIN28A, and GDF9, which demonstrated diagnostic potential in validation sets. Functional analysis indicated these genes' involvement in ubiquitin phosphorylation, PPAR signalling pathway and T-cell differentiation. Immune infiltration analysis revealed increased macrophage presence in ITP, related to the critical genes. scRNA-seq indicated reduced GABARAPL1 expression in ITP bone marrow macrophages. TSMR linked S100A8 with ITP diagnosis, presenting an OR of 0.856 (95% CI = 0.736-0.997, p = 0.045). The study pinpointed four central genes, GABARAPL1, S100A8, LIN28A, and GDF9, tied to mitophagy and ferroptosis in ITP. It posits that diminished GABARAPL1 expression may disrupts ubiquitin phosphorylation and PPAR signalling, impairing mitophagy and inhibiting ferroptosis, leading to immune imbalance.

4.
bioRxiv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38645224

RESUMO

Ubiquitin-specific protease 18 (USP18) is a multifunctional cysteine protease primarily responsible for deconjugating interferon-inducible ubiquitin-like (Ubl) modifier ISG15 from protein substrates. Here, we report the design and synthesis of activity-based probes (ABPs) capable of selectively detecting USP18 activity over other ISG15 cross-reactive deubiquitinases (DUBs) by incorporating unnatural amino acids into the C-terminal tail of ISG15. Combining with a ubiquitin-based DUB ABP, the selective USP18 ABP is employed in a chemoproteomic screening platform to identify and assess inhibitors of DUBs including USP18. We further demonstrate that USP18 ABPs can be utilized to profile differential activities of USP18 in lung cancer cell lines, providing a strategy that will help define the activity-related landscape of USP18 in different disease states and unravel important (de)ISGylation-dependent biological processes.

5.
J Hazard Mater ; 470: 134226, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593665

RESUMO

Contaminants may induce immune response polarization, leading to immune diseases, such as allergic diseases. Evidence concerning the effects of chlorinated paraffins (CPs), an emerging persistent organic pollutant, on immune system is scarce, particularly for epidemiological evidence. This study explores the association between CPs exposure and allergic diseases (allergic rhinitis, atopic eczema, and allergic conjunctivitis) in children and adolescents in the Pearl River Delta (PRD) in China. Herein, 131,304 children and adolescents from primary and secondary schools in the PRD were included and completed the questionnaire survey. The particulate matter (PM) samples were collected in the PRD and the PM2.5-bound CP concentrations were analyzed. In the multivarious adjustment mixed effect model (MEM), an IQR increase in ∑CPs was significantly associated with allergic diseases (rhinitis, eczema, and conjunctivitis) with the estimated odds ratios (ORs) for 1.11 (95% CI: 1.10, 1.13), 1.17 (95% CI: 1.15, 1.19), and 1.82 (95% CI: 1.76, 1.88), respectively. Interaction analysis indicated that overweight and obese individuals might have greater risk. Similar effect estimates were observed in several sensitivity analyses. This study provided epidemiological evidence on the immunotoxicity of CPs. More studies to confirm our findings and investigate mechanisms are needed.


Assuntos
Parafina , Humanos , Adolescente , Criança , Masculino , Feminino , China/epidemiologia , Parafina/toxicidade , Parafina/análise , Hipersensibilidade/epidemiologia , Exposição Ambiental/efeitos adversos , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , Dermatite Atópica/epidemiologia , Dermatite Atópica/induzido quimicamente , Rinite Alérgica/epidemiologia , Rinite Alérgica/induzido quimicamente
6.
J Pharm Biomed Anal ; 245: 116138, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636191

RESUMO

Q-1802 is a humanized bispecific antibody targeting programmed death-ligand 1 (PD-L1) and Claudin 18.2 (CLDN18.2). It can bind to CLDN18.2 and mediate antibody-dependent cell-mediated cytotoxicity against tumor cells. The Fc segment of the antibody recognizing PD-L1 blocks PD-1 signaling and activates innate immunity and adaptive immunity. In this study, we report the development, validation, and application of sensitive and high-throughput enzyme-linked immunosorbent assays (ELISA) to measure the concentrations of Q-1802 in ICR mouse serum. The assay is sensitive, with a lower limit of quantification of 50 ng/mL, has a broad dynamic range of 50-3200 ng/mL, and exhibits excellent precision and accuracy. These assays were successfully applied to in vitro serum stability and pharmacokinetic (PK) studies. In conclusion, we have developed and validated a highly sensitive and selective method for measuring Q-1802 in ICR mouse serum. The development and validation steps of assays met the required criteria for validation, which suggested that these can be applied to quantify Q-1802, as well as in PK studies.

7.
Biosens Bioelectron ; 257: 116329, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677023

RESUMO

Considerable effort has been invested in developing salicylic acid (SA) biosensors for various application purposes. Here, by engineering the sensing modules and host cell chassis, we have gradually optimized the NahR-Psal/Pr-based SA biosensor, increasing the sensitivity and maximum output by 17.2-fold and 9.4-fold, respectively, and improving the detection limit by 800-fold, from 80 µM to 0.1 µM. A portable SA sensing device was constructed by embedding a gelatin-based hydrogel containing an optimized biosensor into the perforations of tape adhered to glass slide, which allowed good determination of SA in the range of 0.1 µM-10 µM. Then, we developed a customized smartphone App to measure the fluorescence intensity of each perforation and automatically calculate the corresponding SA concentration so that we could detect SA concentrations in real cosmetic samples. We anticipate that this smartphone-based imaging biosensor, with its compact size, higher sensitivity, cost-effectiveness, and easy data transfer, will be useful for long-term monitoring of SA.


Assuntos
Técnicas Biossensoriais , Limite de Detecção , Ácido Salicílico , Smartphone , Técnicas Biossensoriais/instrumentação , Ácido Salicílico/análise , Ácido Salicílico/química , Desenho de Equipamento , Humanos , Hidrogéis/química , Cosméticos/química , Cosméticos/análise
8.
Aging (Albany NY) ; 16(6): 5108-5122, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503553

RESUMO

The antitumor effect of Portulaca oleracea L. polysaccharide (POL) has been demonstrated, but whether it curbs the development of ovarian cancer has not been reported. Here, we treated ovarian cancer cells with different concentrations of POL, detected cell activity by CCK-8 assay, and apoptosis rate by flow cytometry. The results showed that SKOV3 and Hey cell survival decreased with increasing POL concentration in a dose-dependent manner. POL significantly inhibited ovarian cancer cell migration and increased cell death compared with the control group. Ferroptosis inhibitors, but not apoptosis, necrosis, and autophagy inhibitors, reversed POL-induced cell death. Further studies revealed that POL promoted the accumulation of lipid reactive oxygen species (ROS), Fe2+, malondialdehyde (MDA), and decreased glutathione (GSH) production. Moreover, POL significantly increased the mortality of ovarian cancer cells. In vivo studies confirmed that POL reduced the volume and weight of tumors and increased the levels of Fe2+ and MDA in mice in vivo. Western blot assay revealed that POL increased the expression of ACSL4 in ovarian cancer cells as well as in tumors in mice in vivo. More importantly, the POL-mediated increase in lipid ROS, Fe2+, MDA, and decrease in GSH were significantly reversed after knocking down ACSL4 in ovarian cancer cells. Thus, POL can effectively inhibit ovarian cancer development, which may be achieved by increasing ACSL4-mediated ferroptosis. These results suggest that POL has the potential to be a potential drug for targeted treatment of ovarian cancer.


Assuntos
Ferroptose , Neoplasias Ovarianas , Portulaca , Animais , Camundongos , Feminino , Humanos , Espécies Reativas de Oxigênio , Neoplasias Ovarianas/tratamento farmacológico , Lipídeos
9.
Adv Healthc Mater ; : e2303897, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452274

RESUMO

Epidemics caused by multiple viruses continue to emerge, which have brought a terrible impact on human society. Identification of viral infections with high sensitivity and portability is of significant importance for the screening and management of diseases caused by viruses. Herein, a microfluidic chip (MFC)-assisted upconversion luminescence biosensing platform is designed and fabricated for point-of-care virus detection. Upconversion nanoparticles with excellent stability are successfully synthesized as luminescent agents for optical signal generation in the portable virus diagnostic platform. The relevant investigation results illustrate that the MFC-assisted virus diagnostic platform possesses outstanding performance such as good integration, high sensitivity (1.12 pg mL-1 ), ease of use, and portability. In addition, clinical sample test result verifies its more prominent virus diagnostic properties than commercially available rapid test strips. All of these thrilling capabilities imply that the designed portable virus diagnostic platform has great potential for future virus detection applications.

10.
Sci Total Environ ; 921: 171224, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402960

RESUMO

The emissions and exposure limits for airborne PM0.1 are lacking, with limited scientific data for toxicity. Therefore, we continuously monitored and calculated the number and mass concentrations of airborne PM0.1 in December 2017, January 2018 and March 2018 during the high pollution period in Guangzhou. We collected PM0.1 from the same period and analyzed their chemical components. A549, THP-1 and A549/THP-1 co-cultured cells were selected for exposure to PM0.1, and evaluated for toxicological responses. Our aims are to 1) measure and analyze the number and mass concentrations, and chemical components of PM0.1; 2) evaluate and compare PM0.1 toxicity to different airway cells models at different time points. Guangzhou had the highest mass concentration of PM0.1 in December 2017, while the number concentration was the lowest. Chemical components in PM0.1 vary significantly at different time periods, and the correlation between the chemical composition or source of PM0.1 and the mass and number concentration of PM0.1 was dissimilar. Exposure to PM0.1 disrupted cell membranes, impaired mitochondrial function, promoted the expression of inflammatory mediators, and interfered with DNA replication in the cell cycle. The damage caused by exposure to PM0.1 at different times exhibited variations across different types of cells. PM0.1 in March 2018 stimulated co-cultured cells to secrete more inflammatory mediators, and CMA was significantly related to the expression of them. Our study indicates that it is essential to monitor both the mass and number concentrations of PM0.1 throughout all seasons annually, as conventional toxicological experiments and the internal components of PM0.1 may not effectively reveal the health damages caused by elevated number levels of PM0.1.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , Material Particulado/análise , China , Mediadores da Inflamação , Tamanho da Partícula , Monitoramento Ambiental
12.
Curr Med Sci ; 44(1): 223-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277016

RESUMO

OBJECTIVE: Retinoblastoma (RB) is a prevalent type of eye cancer in youngsters. Prospero homeobox 1 (Prox1) is a homeobox transcriptional repressor and downstream target of the proneural gene that is relevant in lymphatic, hepatocyte, pancreatic, heart, lens, retinal, and cancer cells. The goal of this study was to investigate the role of Prox1 in RB cell proliferation and drug resistance, as well as to explore the underlying Notch1 mechanism. METHODS: Human RB cell lines (SO-RB50 and Y79) and a primary human retinal microvascular endothelial cell line (ACBRI-181) were used in this study. The expression of Prox1 and Notch1 mRNA and protein in RB cells was detected using quantitative real time-polymerase chain reaction (RT-qPCR) and Western blotting. Cell proliferation was assessed after Prox1 overexpression using the Cell Counting Kit-8 and the MTS assay. Drug-resistant cell lines (SO-RB50/vincristine) were generated and treated with Prox1 to investigate the role of Prox1 in drug resistance. We employed pcDNA-Notch1 to overexpress Notch1 to confirm the role of Notch1 in the protective function of Prox1. Finally, a xenograft model was constructed to assess the effect of Prox1 on RB in vivo. RESULTS: Prox1 was significantly downregulated in RB cells. Overexpression of Prox1 effectively decreased RB cell growth while increasing the sensitivity of drug-resistant cells to vincristine. Notch1 was involved in Prox1's regulatory effects. Notch1 was identified as a target gene of Prox1, which was found to be upregulated in RB cells and repressed by increased Prox1 expression. When pcDNA-Notch1 was transfected, the effect of Prox1 overexpression on RB was removed. Furthermore, by downregulating Notch1, Prox1 overexpression slowed tumor development and increased vincristine sensitivity in vivo. CONCLUSION: These data show that Prox1 decreased RB cell proliferation and drug resistance by targeting Notch1, implying that Prox1 could be a potential therapeutic target for RB.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Resistência a Medicamentos , Neoplasias da Retina/tratamento farmacológico , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Retinoblastoma/tratamento farmacológico , Retinoblastoma/genética , Retinoblastoma/metabolismo , Vincristina/farmacologia
13.
J Pharm Biomed Anal ; 241: 115981, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237543

RESUMO

Shenqi-Tiaoshen formula (SQTSF) is a traditional Chinese medicine (TCM) prescription that has been employed in the treatment of chronic obstructive pulmonary disease (COPD). Clinical practice has demonstrated that SQTSF is an effective prescription for stable COPD. However, owing to the complexity of TCM prescription, there is a lack of in-depth understanding of the chemical components of SQTSF and its in vivo metabolism studies. In this study, a comprehensive analytical strategy based on ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was established to identify the chemical components, the absorbed components, and the metabolites of SQTSF given by gavage in rats, and analyze their dynamic changes. As a result, 86 chemical components of SQTSF were characterized, which were mainly categorized into flavonoids, saponins, organic acids, terpenoids, etc. Among them, 13 compounds were confirmed unambiguously by reference standards. Furthermore, 20 prototype components and 46 metabolites were detected in rat plasma at different time points. It was found that one prototype component and thirteen metabolites could be detected during the entire 24 h, indicating that these compounds were slowly eliminated and thus accumulated in vivo over a prolonged duration. Interestingly, the phenomenon that three prototype components and fourteen metabolites reappeared after a period of disappearance from the plasma was found. It was also observed that different prototype components may generate the same metabolite. The metabolic processes of SQTSF in rats mainly included oxidation, reduction, hydration, demethylation, deglycosylation, methylation, acetylation, glucuronidation, glutathionylation, and associated combination reactions. Overall, the present study identified the chemical components of SQTSF and their dynamic metabolic profile in rat plasma, which provided a systematic and applicable strategy for screening and characterization of the prototype components and metabolites of TCM compound preparations.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Metaboloma , Medicamentos de Ervas Chinesas/química
14.
Luminescence ; 39(1): e4675, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38286603

RESUMO

The coronavirus disease-2019 pandemic reflects the underdevelopment of point-of-care diagnostic technology. Nuclei acid (NA) detection is the "gold standard" method for the early diagnosis of the B.1.1.529 (Omicron) variant of severe acute respiratory syndrome-coronavirus disease-2. Polymerase chain reaction is the main method for NA detection but requires considerable manpower and sample processing taking ≥ 3 h. To simplify the operation processes and reduce the detection time, exonuclease III (Exo III)-aided MoS2 /AIE nanoprobes were developed for rapid and sensitive detection of the oligonucleotides of Omicron. Molybdenum disulfide (MoS2 ) nanosheets with excellent optical absorbance and distinguishable affinity to single-strand and duplex DNAs were applied as quenchers, and aggregation-induced emission (AIE) molecules with high luminous efficiency were designed as donor in fluorescence resonance energy transfer-based nanoprobes. Exo III with catalytic capability was used for signal amplification to increase the sensitivity of detection. The composite nanoprobes detected the mutated nucleocapsid (N)-gene and spike (S)-gene oligonucleotides of Omicron within 40 min with a limit of detection of 4.7 pM, and showed great potential for application in community medicine.


Assuntos
Técnicas Biossensoriais , COVID-19 , Exodesoxirribonucleases , Humanos , Oligonucleotídeos , SARS-CoV-2/genética , Molibdênio , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico
15.
Biosens Bioelectron ; 248: 115969, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154329

RESUMO

Upconversion nanoparticles (UCNPs) are ideal donors for luminescence resonance energy transfer (LRET)-based biosensors due to their excellent upconversion luminescence properties. However, the relatively large size of antibodies and proteins limits the application of UCNPs-based LRET biosensors in protein detection because the large steric hindrance of proteins leads to low energy transfer efficiency between UCNPs and receptors. Herein, we developed a magnetic responsive UCNPs-based LRET biosensor to control the coupling distance between antibody-functionalized UCNPs (Ab-UCNPs) as donors and antibody-PEG linker-magnetic gold nanoparticles (Ab-PEG-MGNs) as acceptors for ultrasensitive and highly selective detection of SARS-CoV-2 spike proteins. Our results showed that this platform reversibly shortened the coupling distance between UCNPs and MGNs and enhanced the LRET signal with a 10-fold increase in the limit of detection (LOD) from 20.6 pg/mL without magnetic modulation to 2.1 pg/mL with magnetic modulation within 1 h. The finite-difference time-domain (FDTD) simulation with cyclic distance change confirmed the distance-dependent LRET efficiency under magnetic modulation, which supported the experimental results. Moreover, the applications of this magnetic-responsive UCNP-based LRET biosensor could be extended to other large-size biomolecule detection.


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanopartículas Metálicas , Nanopartículas , Humanos , Glicoproteína da Espícula de Coronavírus , Luminescência , Ouro , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , SARS-CoV-2 , Transferência Ressonante de Energia de Fluorescência/métodos , Anticorpos
16.
Cancer Med ; 12(24): 21605-21614, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38062905

RESUMO

INTRODUCTION: Characteristics of patients in clinical trials may differ from those of real-world patients. Our objective was to describe biomarker testing and outcomes among patients with advanced non-small cell lung cancer (aNSCLC) in a real-world setting. METHODS: This retrospective cohort study included patients ≥18 years old, diagnosed with stage IIIB/C or IV NSCLC, and in the TEMPUS oncology dataset from January 1, 2012, to December 31, 2020. Patient characteristics associated with biomarker testing were evaluated in patients with positive biomarkers using univariate logistic regression models. Cox proportional hazard models were used to estimate median survival. RESULTS: Of 9540 patients included, 41.7% had biomarker testing, and 2158 had a positive biomarker result. Men (vs women; odds ratio [OR], 0.82; 95% CI: 0.74-0.91), Black patients (vs White; OR, 0.83; 95% CI: 0.72-0.97), patients with squamous (OR, 0.22; 95% CI: 0.19-0.25) or unknown histology (OR, 0.53; 95% CI: 0.45-0.61) (vs non-squamous histology), and patients with an Eastern Cooperative Oncology Group performance status (ECOG PS) of 2+ (OR, 0.69; 95% CI: 0.57-0.84) or missing (OR, 0.56; 95% CI: 0.48-0.66) (vs ECOG PS of 0) were less likely to undergo biomarker testing. Patients with positive biomarkers who received NCCN-recommended treatment options (55.7%) had significantly longer median overall survival (OS) (hazard ratio [HR], 0.84; 95% CI: 0.75-0.95) and real-world progression-free survival (rwPFS) (HR, 0.68; 95% CI: 0.62-0.75). CONCLUSION: More than 50% of patients were untested for biomarkers. Patients who were less likely to be tested included men, Black patients, current smokers, patients with squamous aNSCLC, and patients with an ECOG PS of 2+. Patients with positive biomarkers who received NCCN-recommended treatment options had significantly longer OS and PFS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Masculino , Humanos , Feminino , Estados Unidos/epidemiologia , Adolescente , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Biomarcadores
17.
Mol Biotechnol ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123749

RESUMO

The shared mechanisms between pediatric acute lymphoblastic leukaemia (ALL) and pediatric sepsis are currently unclear. This study was aimed to explore the shared key genes of pediatric ALL and pediatric sepsis. The datasets involved were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between disease and control samples in GSE13904 and GSE79533 were intersected. The least absolute shrinkage and selection operator (LASSO) and the boruta analyses were performed in GSE13904 and GSE79533 separately based on shared DEGs, and shared key genes were obtained by taking the intersection of sepsis-related key genes and ALL-related key genes. Three shared key genes (HCK, NOG, RNF125) were obtained, that have a good diagnostic value for both sepsis and ALL. The correlation between shared key genes and differentially expressed immune cells was higher in GSE13904 and conversely, the correlation of which was lower in GSE79533. Suggesting that the sharing key genes had a different impact on the immune environment in pediatric ALL and pediatric sepsis. We make the case that this study provides a new perspective to study the relationship between pediatric ALL and pediatric sepsis.

18.
Eur J Pharmacol ; 961: 176162, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951487

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) has been confirmed as the most common malignant hematologic neoplasm among children. A novel antitumor mechanism of lycorine was elucidated in this study. As revealed by the result of this study, lycorine significantly inhibited the growth and proliferation of REH and NALM-6 and induced their apoptosis. The result of the RNA-seq analysis suggested that lycorine targeted PSAT1 of serine/glycine metabolism in B-ALL cells. As indicated by the result of the GSEA analysis, the genes enriched in the amino acid metabolic pathways were down-regulated by lycorine. As revealed by the results of ectopic expression, shRNA knockdown assays, and further liquid-phase tandem mass spectrometry (LC-MS) analysis, lycorine reduced serine/glycine metabolites by down-regulating PSAT1, further disrupting carbon metabolism and eliminating B-ALL cells. Furthermore, lycorine showed a synergistic effect with cytarabine in ALL treatments. Lastly, lycorine significantly down-regulated leukemia progression in the cell line-derived xenograft (CDX) model. In brief, this study has suggested for the first time that lycorine is a promising anti-ALL drug, and a novel amino acid metabolism-associated property of lycorine was identified.


Assuntos
Glicina , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Criança , Humanos , Proliferação de Células , Linhagem Celular Tumoral , Glicina/farmacologia , Serina , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Apoptose , Redes e Vias Metabólicas
19.
Nanomaterials (Basel) ; 13(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37947667

RESUMO

Nuclear fission reactions can release massive amounts of energy accompanied by neutrons and γ photons, which create a mixed radiation field and enable a series of reactions in nuclear reactors. This study demonstrates a one-pot/one-step approach to synthesizing radioactive gold nanoparticles (RGNP) without using radioactive precursors and reducing agents. Trivalent gold ions are reduced into gold nanoparticles (8.6-146 nm), and a particular portion of 197Au atoms is simultaneously converted to 198Au atoms, rendering the nanoparticles radioactive. We suggest that harnessing nuclear energy to gold nanoparticles is feasible in the interests of advancing nanotechnology for cancer therapy. A combination of RGNP applied through convection-enhanced delivery (CED) and temozolomide (TMZ) through oral administration demonstrates the synergistic effect in treating glioblastoma-bearing mice. The mean survival for RGNP/TMZ treatment was 68.9 ± 9.7 days compared to that for standalone RGNP (38.4 ± 2.2 days) or TMZ (42.8 ± 2.5 days) therapies. Based on the verification of bioluminescence images, positron emission tomography, and immunohistochemistry inspection, the combination treatment can inhibit the proliferation of glioblastoma, highlighting the niche of concurrent chemoradiotherapy (CCRT) attributed to RGNP and TMZ.

20.
Nucleic Acids Res ; 51(22): 12020-12030, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962331

RESUMO

DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.


Assuntos
DNA , Motivos de Nucleotídeos , DNA/química , Quadruplex G , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Mitoxantrona , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA