RESUMO
Combined inhibition of vascular endothelial growth factor receptor (VEGFR) and the programmed cell death protein 1 (PD-1) pathways has shown efficacy in multiple cancers; however, the clinical outcomes show limited benefits and the unmet clinical needs still remain and require improvement in efficacy. Using murine colon carcinoma (CT26) allograft models, we examined the efficacy and elucidated novel tumor microenvironment (TME) remodeling mechanisms underlying the combination of chidamide (a benzamide-based class l histone deacetylase inhibitor; brand name in Taiwan, Kepida®) with VEGF receptor tyrosine kinase inhibitor (TKIs; cabozantinib/regorafenib, etc.) and immune checkpoint inhibitors (ICIs; anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies). The TME was assessed using flow cytometry and RNA-sequencing to determine the novel mechanisms and their correlation with therapeutic effects in mice with significant treatment response. Compared with ICI alone or cabozantinib/regorafenib + ICI, combination of chidamide + cabozantinib/regorafenib + ICI increased the tumor response and survival benefits. In particular, treatment of CT26-bearing mice with chidamide + regorafenib + anti-PD-1 antibody showed a better objective response rate (ORR) and overall survival (OS). Similar results were observed in anti-PD-1 treatment-resistant mice. After treatment with this optimal combination, in the TME, RNA-sequencing revealed that downregulated mRNAs were correlated with leukocyte migration, cell chemotaxis, and macrophage gene sets, and flow cytometry analysis showed that the cell numbers of myeloid-derived polymorphonuclear suppressor cells and tumor-associated macrophages were decreased. Accordingly, chidamide + regorafenib + anti-PD-1 antibody combination therapy could trigger a novel TME remodeling mechanism by attenuating immunosuppressive cells, and restoring T-cell activation to enhance ORR and OS. Our studies also showed that the addition of Chidamide to the regorafenib + anti-PD-1 Ab combination could induce a durable tumor-specific response by attenuating immune suppression in the TME. In addition, this result suggests that TME remodeling, mediated by epigenetic immunomodulator combined with TKI and ICI, would be more advantageous for achieving a high objective response rate, when compared to TKI plus ICI or ICI alone, and maintaining long-lasting antitumor activity.
Assuntos
Neoplasias do Colo , Microambiente Tumoral , Aminopiridinas , Anilidas , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Compostos de Fenilureia , Receptor de Morte Celular Programada 1 , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas , RNA , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Fator A de Crescimento do Endotélio VascularRESUMO
Immune checkpoint inhibitors (ICIs) have shown clinical benefit in solid tumors, with modest rates of clinical response. Hence, improved therapeutic approaches need to be investigated. Herein, we assessed a combination of chidamide plus celecoxib (called CC-01) combined with programmed cell death protein 1 (PD-1) blockade in a CT26 model as potent tumor microenvironment (TME) regulator. The antitumor activity was assessed by measuring tumor size, overall response rate, and survival rate. Immune profiling of tumor-infiltrating lymphocytes was performed by flow cytometry. Tumor tissues were assessed by chip assay to predict the possible pathway. Tumor size was significantly reduced in mice treated with CC-01 combined with or without anti-PD-1 antibody, however the triple combination therapy consistently demonstrated that it significantly increased both the ORR and survival rate in term of clinical applications. In the combination group, immune landscape profiling revealed decreased populations of immunosuppressive regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Analysis of the mouse tumor chip data using Gene Ontology enrichment analysis of biological processes revealed that the triple combination upregulated genes associated with responses to interferon-gamma. Our results demonstrated that CC-01 possessed potent TME regulatory properties, augmenting the antitumor effect when combined with ICIs. This antitumor effect was achieved by altering the immune landscape in TILs (tumor-infiltrating lymphocytes) and was associated with immune cell activation in the TME. Furthermore, CC-01 demonstrated potent anticancer immune response activity, mainly reducing the number and function of several immunosuppressive cells. The combination of CC-01 with an ICI will further enhance the anticancer effect and boost the immune response rate. Collectively, our results support the clinical evaluation of CC-01 in combination with ICIs in several advanced cancers.