Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 12(3): 1393-1415, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35425188

RESUMO

Fluorescent probes have been widely studied and applied in environment and health analysis, where among them small molecular "covalent assembly" probes are a novel type of reaction probes with many advantages, including no background interference, remarkable colorimetric change, rapid response, high sensitivity, and strong fluorescent signal. During the past decade, significant contributions have been made globally to both the application and mechanism of covalent assembly probes. In this review, we summarize the recent development of covalent assembly probes, classifying them based on different analytes, such as anions, metal ions, small biological molecules, reactive oxidative spices (ROS), reactive nitrogen species (RNS), nerve agent mimics, and enzymes, and introduce their detection mechanism in detail. Furthermore, the perspective on the next generation of covalent-assembly probes toward biomolecules imaging is presented.

2.
Neuromolecular Med ; 22(1): 56-67, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31401719

RESUMO

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of dopaminergic neurons in substantia nigra. The underlying mechanisms of PD pathogenesis have not been fully illustrated and currently PD remains incurable. Accumulating evidences suggest that mitochondrial dysfunction plays pivotal role in the dopaminergic neuronal death. Therefore, discovery of novel and safe agent for rescuing mitochondrial dysfunction would benefit PD treatment. Here we demonstrated for the first time that α-Arbutin (Arb), a natural polyphenol extracted from Ericaceae species, displayed significant protective effect on the rotenone (Rot)-induced mitochondrial dysfunction and apoptosis of human neuroblastoma cell (SH-SY5Y). We further found that the neuroprotective effect of Arb was associated with ameliorating oxidative stress, stabilizing of mitochondrial membrane potential, and enhancing adenosine triphosphate production. To investigate the underlying mechanism, we checked the AMP-activated protein kinase and autophagy pathway and we found that both were involved in the neuroprotection of Arb. Moreover, we explored the protective effect of Arb in drosophila PD model and found that Arb rescued parkin deficiency-induced motor function disability and mitochondrial abnormality of drosophila. Taken together, our study demonstrated that Arb got excellent neuroprotective effect on PD models both in vitro and in vivo and Arb might serve as a potent therapeutic agent for the treatment of PD.


Assuntos
Antioxidantes/uso terapêutico , Arbutina/uso terapêutico , Ericaceae/química , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Extratos Vegetais/química , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Arbutina/isolamento & purificação , Arbutina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Neuroblastoma/patologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Rotenona/toxicidade , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
3.
Med Res Rev ; 39(6): 2172-2193, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30972803

RESUMO

Artemisinin and its derivatives, with their outstanding clinical efficacy and safety, represent the most effective and impactful antimalarial drugs. Apart from its antimalarial effect, artemisinin has also been shown to exhibit selective anticancer properties against multiple cancer types both in vitro and in vivo. Specifically, our previous studies highlighted the therapeutic effects of artemisinin on autophagy regulation. Autophagy is a well-conserved degradative process that recycles cytoplasmic contents and organelles in lysosomes to maintain cellular homeostasis. The deregulation of autophagy is often observed in cancer cells, where it contributes to tumor adaptation to nutrient-deficient tumor microenvironments. This review discusses recent advances in the anticancer properties of artemisinin and its derivatives via their regulation of autophagy, mitophagy, and ferritinophagy. In particular, we will discuss the mechanisms of artemisinin activation in cancer and novel findings regarding the role of artemisinin in regulating autophagy, which involves changes in multiple signaling pathways. More importantly, with increasing failure rates and the high cost of the development of novel anticancer drugs, the strategy of repurposing traditional therapeutic Chinese medicinal agents such as artemisinin to treat cancer provides a more attractive alternative. We believe that the topics covered here will be important in demonstrating the potential of artemisinin and its derivatives as safe and potent anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Artemisininas/farmacologia , Autofagia/efeitos dos fármacos , Animais , Artemisininas/química , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Mitofagia/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Autophagy ; 15(11): 1917-1934, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30898011

RESUMO

Macroautophagy/autophagy is a cellular process in which cytosolic contents are degraded by lysosome in response to various stress conditions. Apart from its role in the maintenance of cellular homeostasis, autophagy also involves in regulation of cell cycle progression under nutrient-deprivation conditions. However, whether and how autophagy is regulated by the cell cycle especially during mitosis remains largely undefined. Here we show that WIPI2/ATG18B (WD repeat domain, phosphoinositide interacting 2), an autophagy-related (ATG) protein that plays a critical role in autophagosome biogenesis, is a direct substrate of CUL4-RING ubiquitin ligases (CRL4s). Upon mitosis induction, CRL4s are activated via neddylation, and recruit WIPI2 via DDB1 (damage specific DNA binding protein 1), leading to polyubiquitination and proteasomal degradation of WIPI2 and suppression of autophagy. The WIPI2 protein level and autophagy during mitosis could be rescued by knockdown of CRL4s or treatment with MLN4924/Pevonedistat, a selective inhibitor of CRLs, via suppression of NAE1 (NEDD8 activating enzyme E1 subunit 1). Moreover, restoration of WIPI2 rescues autophagy during mitosis and leads to mitotic slippage and cell senescence. Our study thus discovers a novel function of CRL4s in autophagy by targeting WIPI2 for polyubiquitination and proteasomal degradation during mitosis. Abbreviations: ACTB, actin beta; ATG, autophagy-related; AMPK, AMP-activated protein kinase; AURKB/ARK2, aurora kinase B; BafA1, bafilomycin A1; CCNB1, cyclin B1; CDK1, cyclin dependent kinase 1; CHX, cycloheximide; CQ, chloroquine; CRL4s, CUL4-RING ubiquitin ligases; DDB1, damage specific DNA binding protein 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFP, green fluorescent protein; GST, glutathione S-transferase; MAP1LC3B/LC3B, microtubule associated protein 1 light chain 3 beta; STK11/LKB1,serine/threonine kinase 11; MTORC1/MTOR complex 1, mechanistic target of rapamycin kinase complex 1; NAE1, NEDD8 activating enzyme E1 subunit 1; NOC, nocodazole; RING, really interesting new gene; RBX1, ring-box 1; SA-GLB1/ß-gal, senescence-associated galactosidase beta 1; TSC2, TSC complex subunit 2; TUBA, tubulin alpha; WIPI2, WD repeat domain, phosphoinositide interacting 2.


Assuntos
Autofagia/genética , Proteínas de Membrana/metabolismo , Mitose/genética , Proteínas de Ligação a Fosfato/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/genética , Senescência Celular/genética , Ciclopentanos/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Leupeptinas/farmacologia , Proteínas de Membrana/genética , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , Proteínas de Ligação a Fosfato/genética , Ligação Proteica/genética , Pirimidinas/farmacologia , Transdução de Sinais/genética , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
5.
Oxid Med Cell Longev ; 2016: 6842568, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26798425

RESUMO

Oxidative stress is a loss of balance between the production of reactive oxygen species during cellular metabolism and the mechanisms that clear these species to maintain cellular redox homeostasis. Increased oxidative stress has been associated with muscular dystrophy, and many studies have proposed mechanisms that bridge these two pathological conditions at the molecular level. In this review, the evidence indicating a causal role of oxidative stress in the pathogenesis of various muscular dystrophies is revisited. In particular, the mediation of cellular redox status in dystrophic muscle by NF-κB pathway, autophagy, telomere shortening, and epigenetic regulation are discussed. Lastly, the current stance of targeting these pathways using antioxidant therapies in preclinical and clinical trials is examined.


Assuntos
Músculo Esquelético/patologia , Atrofia Muscular/terapia , Estresse Oxidativo , Animais , Humanos , Modelos Biológicos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
6.
J Biol Chem ; 289(48): 33425-41, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25305013

RESUMO

Artesunate (ART) is an anti-malaria drug that has been shown to exhibit anti-tumor activity, and functional lysosomes are reported to be required for ART-induced cancer cell death, whereas the underlying molecular mechanisms remain largely elusive. In this study, we aimed to elucidate the molecular mechanisms underlying ART-induced cell death. We first confirmed that ART induces apoptotic cell death in cancer cells. Interestingly, we found that ART preferably accumulates in the lysosomes and is able to activate lysosomal function via promotion of lysosomal V-ATPase assembly. Furthermore, we found that lysosomes function upstream of mitochondria in reactive oxygen species production. Importantly, we provided evidence showing that lysosomal iron is required for the lysosomal activation and mitochondrial reactive oxygen species production induced by ART. Finally, we showed that ART-induced cell death is mediated by the release of iron in the lysosomes, which results from the lysosomal degradation of ferritin, an iron storage protein. Meanwhile, overexpression of ferritin heavy chain significantly protected cells from ART-induced cell death. In addition, knockdown of nuclear receptor coactivator 4, the adaptor protein for ferritin degradation, was able to block ART-mediated ferritin degradation and rescue the ART-induced cell death. In summary, our study demonstrates that ART treatment activates lysosomal function and then promotes ferritin degradation, subsequently leading to the increase of lysosomal iron that is utilized by ART for its cytotoxic effect on cancer cells. Thus, our data reveal a new mechanistic action underlying ART-induced cell death in cancer cells.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Ferritinas/metabolismo , Lisossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Proteólise/efeitos dos fármacos , Artesunato , Morte Celular/efeitos dos fármacos , Células HeLa , Células Hep G2 , Humanos , Ferro/metabolismo , Neoplasias/metabolismo , Neoplasias/fisiopatologia , Coativadores de Receptor Nuclear/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
7.
Cell Res ; 23(4): 508-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23337583

RESUMO

Lysosome is a key subcellular organelle in the execution of the autophagic process and at present little is known whether lysosomal function is controlled in the process of autophagy. In this study, we first found that suppression of mammalian target of rapamycin (mTOR) activity by starvation or two mTOR catalytic inhibitors (PP242 and Torin1), but not by an allosteric inhibitor (rapamycin), leads to activation of lysosomal function. Second, we provided evidence that activation of lysosomal function is associated with the suppression of mTOR complex 1 (mTORC1), but not mTORC2, and the mTORC1 localization to lysosomes is not directly correlated to its regulatory role in lysosomal function. Third, we examined the involvement of transcription factor EB (TFEB) and demonstrated that TFEB activation following mTORC1 suppression is necessary but not sufficient for lysosomal activation. Finally, Atg5 or Atg7 deletion or blockage of the autophagosome-lysosome fusion process effectively diminished lysosomal activation, suggesting that lysosomal activation occurring in the course of autophagy is dependent on autophagosome-lysosome fusion. Taken together, this study demonstrates that in the course of autophagy, lysosomal function is upregulated via a dual mechanism involving mTORC1 suppression and autophagosome-lysosome fusion.


Assuntos
Autofagia/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/agonistas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Indóis/farmacologia , Lisossomos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Fusão de Membrana/efeitos dos fármacos , Fusão de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Naftiridinas/farmacologia , Fagossomos/genética , Purinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Enzimas Ativadoras de Ubiquitina/antagonistas & inibidores , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo
8.
PLoS One ; 7(10): e46749, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056433

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) is the most extensive studied tea polyphenol for its anti-cancer function. In this study, we report a novel mechanism of action for EGCG-mediated cell death by identifying the critical role of lysosomal membrane permeabilization (LMP). First, EGCG-induced cell death in human cancer cells (both HepG2 and HeLa) was found to be caspase-independent and accompanied by evident cytosolic vacuolization, only observable when cells were treated in serum-free medium. The cytosolic vacuolization observed in EGCG-treated cells was most probably caused by lysosomal dilation. Interestingly, EGCG was able to disrupt autophagic flux at the degradation stage by impairment of lysosomal function, and EGCG-induced cell death was independent of Atg5 or autophagy. The key finding of this study is that EGCG is able to trigger LMP, as evidenced by Lyso-Tracker Red staining, cathepsin D cytosolic translocation and cytosolic acidification. Consistently, a lysosomotropic agent, chloroquine, effectively rescues the cell death via suppressing LMP-caused cytosolic acidification. Lastly, we found that EGCG promotes production of intracellular ROS upstream of LMP and cell death, as evidenced by increased level of ROS in cells treated with EGCG and the protective effects of antioxidant N-acetylcysteine (NAC) against EGCG-mediated LMP and cell death. Taken together, data from our study reveal a novel mechanism underlying EGCG-induced cell death involving ROS and LMP. Therefore, understanding this lysosome-associated cell death pathway shed new lights on the anti-cancer effects of EGCG.


Assuntos
Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Western Blotting , Catequina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA