Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260362

RESUMO

In response to antigens, B cells undergo affinity maturation and class switching mediated by activation-induced cytidine deaminase (AID) in germinal centers (GCs) of secondary lymphoid organs, but uncontrolled AID activity can precipitate autoimmunity and cancer. The regulation of GC antibody diversification is of fundamental importance but not well understood. We found that autoimmune regulator (AIRE), the molecule essential for T cell tolerance, is expressed in GC B cells in a CD40-dependent manner, interacts with AID and negatively regulates antibody affinity maturation and class switching by inhibiting AID function. AIRE deficiency in B cells caused altered antibody repertoire, increased somatic hypermutations, elevated autoantibodies to T helper 17 effector cytokines and defective control of skin Candida albicans. These results define a GC B cell checkpoint of humoral immunity and illuminate new approaches of generating high-affinity neutralizing antibodies for immunotherapy.

2.
Nat Commun ; 14(1): 1058, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828833

RESUMO

SARS-CoV-2 Omicron variants feature highly mutated spike proteins with extraordinary abilities in evading antibodies isolated earlier in the pandemic. Investigation of memory B cells from patients primarily with breakthrough infections with the Delta variant enables isolation of a number of neutralizing antibodies cross-reactive to heterologous variants of concern (VOCs) including Omicron variants (BA.1-BA.4). Structural studies identify altered complementarity determining region (CDR) amino acids and highly unusual heavy chain CDR2 insertions respectively in two representative cross-neutralizing antibodies-YB9-258 and YB13-292. These features are putatively introduced by somatic hypermutation and they are heavily involved in epitope recognition to broaden neutralization breadth. Previously, insertions/deletions were rarely reported for antiviral antibodies except for those induced by HIV-1 chronic infections. These data provide molecular mechanisms for cross-neutralization of heterologous SARS-CoV-2 variants by antibodies isolated from Delta variant infected patients with implications for future vaccination strategy.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
3.
J Fungi (Basel) ; 9(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36836328

RESUMO

In this study, the diversity of putative mycoviruses present in 66 strains of binucleate Rhizoctonia (BNR, including anastomosis group (AG)-A, AG-Fa, AG-K, and AG-W) and 192 strains of multinucleate Rhizoctonia (MNR, including AG-1-IA, AG-2-1, AG-3 PT, AG-4HGI, AG-4HGII, AG-4HGIII, and AG-5), which are the causal agents of potato stem canker or black scurf, was studied using metatranscriptome sequencing. The number of contigs related to mycoviruses identified from BNR and MNR was 173 and 485, respectively. On average, each strain of BNR accommodated 2.62 putative mycoviruses, while each strain of MNR accommodated 2.53 putative mycoviruses. Putative mycoviruses detected in both BNR and MNR contained positive single-stranded RNA (+ssRNA), double-stranded RNA (dsRNA), and negative single-stranded RNA (-ssRNA) genomes, with +ssRNA genome being the prevalent nucleic acid type (82.08% in BNR and 75.46% in MNR). Except for 3 unclassified, 170 putative mycoviruses found in BNR belonged to 13 families; excluding 33 unclassified, 452 putative mycoviruses found in MNR belonged to 19 families. Through genome organization, multiple alignments, and phylogenetic analyses, 4 new parititviruses, 39 novel mitoviruses, and 4 new hypoviruses with nearly whole genome were detected in the 258 strains of BNR and MNR.

4.
Anal Biochem ; 657: 114871, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36108795

RESUMO

The field of antibody development is under pressure to meet rising demands for speed, cost-effectiveness, efficacy, reliability, and large-scale production. It is costly and time-consuming to immunize animals and build a single-domain antibody (sdAb) library for each target. Using the variable domain (VHH) of heavy-chain only antibodies (HcAbs) derived from blood samples of 75 non-immunized camelid animals (51 alpacas, 13 llamas, 11 Bactrian camels), and spleens from two Bactrian camels, a naïve sdAb library with extensive megadiversity and reusability was constructed. The library was evaluated using next-generation DNA sequencing (NGS) and was found to contain hundreds of billions of unique clones. To confirm the availability of target-specific VHHs, a naive library was screened for a variety of targets. At least two VHH candidates were extracted for each target using a 20-day selection pipeline. Some binders had ultrahigh potencies, with binding affinities in the nanomolar range. This naïve library, in particular, offers the possibility of acquiring unique antibodies targeting antigens of interest with low feasible dissociation constant (kD) without the time, effort, and price associated in producing antibodies in animals via antigen injection. Overall, the study shows that the megadiverse naïve library provides a rapid, adaptable, and easy platform for antibody creation, emphasizing its therapeutic and diagnostic implications.


Assuntos
Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Anticorpos/genética , Antígenos , Camelus/genética , Biblioteca Gênica , Cadeias Pesadas de Imunoglobulinas , Reprodutibilidade dos Testes
5.
Sci Rep ; 12(1): 12211, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842473

RESUMO

PCSK9 is an effective target for lowering LDL-c. Previously, a camelid-human chimeric heavy chain antibody VHH-B11-Fc targeting human PCSK9 was designed. It had a potent hypolipidemic effect. However, the nanobody VHH-B11 interacts with PCSK9 at low affinity, while camelid VHH exhibits some immunogenicity. Moreover, the interacting epitope is yet to be identified, although VHH-B11 was shown to have distinct hPCSK9-binding epitopes for Evolocumab. This might impede the molecule's progress from bench to bedside. In the present study, we designed various configurations to improve the affinity of VHH-B11 with hPCSK9 (< 10 nM) that in turn enhanced the druggability of VHH-B11-Fc. Then, 17 amino acids were specifically mutated to increase the degree of humanization of the nanobody VHH-B11. Using phage display and sequencing technology, the linear epitope "STHGAGW" (amino acids 447-452) was identified in the hinge region of PCSK9 as the interacting site between VHH-B11-Fc and hPCSK9. Unlike the interaction epitope of Evolocumab, located in the catalytic region of PCSK9, the binding epitope of VHH-B11 is located in the hinge region of PCSK9, which is rarely reported. These findings indicated that a specific mechanism underlying this interaction needs to be explored.


Assuntos
Pró-Proteína Convertase 9 , Anticorpos de Domínio Único , Aminoácidos , Epitopos , Humanos , Cadeias Pesadas de Imunoglobulinas , Pró-Proteína Convertase 9/genética
6.
J Immunol ; 208(1): 181-189, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880108

RESUMO

The 0.8-Mb Ig new Ag receptor (IgNAR) region of the whitespotted bamboo shark (Chiloscyllium plagiosum) is incompletely assembled in Chr_44 of the reference genome. Here we used Cas9-assisted targeting of chromosome segments (CATCH) to enrich the 2 Mb region of the Chr_44 IgNAR loci and sequenced it by PacBio and next-generation sequencing. A fragment >3.13 Mb was isolated intact from the RBCs of sharks. The target was enriched 245.531-fold, and sequences had up to 94% coverage with a 255× mean depth. Compared with the previously published sequences, 20 holes were filled, with a total length of 3508 bp. In addition, we report five potential germline V alleles of IgNAR1 from six sharks that may belong to two clusters of the IgNAR. Our results provide a new method to research the germline of large Ig gene segments, as well as provide the enhanced bamboo shark IgNAR gene loci with fewer gaps.


Assuntos
Proteínas de Peixes/genética , Loci Gênicos/genética , Imunoglobulinas/genética , Receptores de Antígenos/genética , Tubarões/imunologia , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
7.
Hum Immunol ; 83(2): 119-129, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34785098

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However, the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here, we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion, and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones 2-3 weeks after the onset of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34, and IGHV4-39 in COVID-19 patients were more abundant than those of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso de 80 Anos ou mais , Anticorpos Neutralizantes/imunologia , Feminino , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Pessoa de Meia-Idade
8.
Front Bioeng Biotechnol ; 9: 792111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957081

RESUMO

The development of shark single domain antibodies (sdAbs) is hindered by the high cost and tediousness of large-sized shark farming. Here, we demonstrated white-spotted bamboo sharks (Chiloscyllium plagiosum) being cultivated commercially as a promising small animal model to produce sdAbs. We found that immunoglobulin new antigen receptor (IgNAR) presented in bamboo shark genome, transcriptome, and plasma. Four complete IgNAR clusters including variable domains (vNARs) were discovered in the germline, and the Variable-Joining pair from IgNAR1 cluster was dominant from immune repertoires in blood. Bamboo sharks developed effective immune responses upon green fluorescent protein (GFP), near-infrared fluorescent protein iRFP713, and Freund's adjuvant immunization revealed by elevated lymphocyte counts and antigen specific IgNAR. Before and after immunization, the complementarity determining region 3 (CDR3) of IgNAR were the major determinant of IgNAR diversity revealed by 400-bp deep sequencing. To prove that bamboo sharks could produce high-affinity IgNAR, we isolated anti-GFP and anti-iRFP713 vNARs with up to 0.3 and 3.8 nM affinities, respectively, from immunized sharks. Moreover, we constructed biparatopic vNARs with the highest known affinities (20.7 pM) to GFP and validated the functions of anti-GFP vNARs as intrabodies in mammalian cells. Taken together, our study will accelerate the discovery and development of bamboo shark sdAbs for biomedical industry at low cost and easy operation.

9.
J Oncol ; 2021: 5646589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527051

RESUMO

In this report, one novel method has been developed to screen the monoclonal antibody against human pancreatic cancer biomarker glypican-1 (GPC1) through the combination of fluorescent cell sorting and single B cell amplification. GPC1-positive B cells were sorted out from the peripheral blood mononuclear cells (PBMCs) by fluorescent cell sorting after the GPC1 immunization to the New Zealand white rabbit. Then, total RNA was extracted and reversely transcribed into cDNA, which was used as the template, and the variable region sequences of both heavy and light chains were amplified from the same B cell. Next, their recombinant antibody was expressed and purified from the human 293T cell after the antibody gene amplification and expression vector construction. The enzyme-linked immunosorbent assay (ELISA) and flow cytometry assays were used to determine the antibody affinity. The antibody named GPC-12 that we screened and obtained was proven to have natural heavy-light chain pairing information, and it was highly specific to the GPC1 antigen, and the affinity could reach 1 × 10-7 M. Overall, an effective and novel method has been successfully developed to screen the antibody by combining the fluorescent cell sorting and single-cell amplifying technologies, which was proved to be workable in our setting.

10.
iScience ; 23(11): 101754, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33251490

RESUMO

Chondrichthyan (cartilaginous fish) occupies a key phylogenetic position and is important for investigating evolutionary processes of vertebrates. However, limited whole genomes impede our in-depth knowledge of important issues such as chromosome evolution and immunity. Here, we report the chromosome-level genome of white-spotted bamboo shark. Combing it with other shark genomes, we reconstructed 16 ancestral chromosomes of bamboo shark and illustrate a dynamic chromosome rearrangement process. We found that genes on 13 fast-evolving chromosomes can be enriched in immune-related pathways. And two chromosomes contain important genes that can be used to develop single-chain antibodies, which were shown to have high affinity to human disease markers by using enzyme-linked immunosorbent assay. We also found three bone formation-related genes were lost due to chromosome rearrangements. Our study highlights the importance of chromosome rearrangements, providing resources for understanding of cartilaginous fish diversification and potential application of single-chain antibodies.

11.
Clin Transl Med ; 9(1): 16, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32056048

RESUMO

BACKGROUND: The advent of proprotein convertase subtilisin/kexin type 9 (PCSK9)-inhibiting drugs have provided an effective, but extremely expensive treatment for the management of low density lipoprotein (LDL). Our aim was to explore a cost-effective application of camelid anti-PCSK9 single domain antibodies (sdAbs), which are high variable regions of the camelid heavy chain antibodies (VHHs), as a human PCSK9 (hPCSK9) inhibitor. One female llama was immunized with hPCSK9. Screening of high affinity anti-PCSK9 VHHs was carried out based on surface plasmon resonance (SPR) technology. We reported a lysate kinetic analysis method improving the screening efficiency. To increase the serum half-life and targeting properties, the constant region fragment of the human immunoglobulin gamma sub-type 4 (IgG4 Fc) was incorporated to form a novel llama-human chimeric molecule (VHH-hFc). RESULTS: The PCSK9 inhibiting effects of the VHH proteins were analyzed in two human liver hepatocellular cells (HepG2 and Huh7) and in the hPCSK9 transgenic Sprague-Dawley (SD) rat model. The hPCSK9 antagonistic potency of the bivalent VHH-hFc exceeded the monovalent VHH (P < 0.001) in hepatocarcinoma cells. Furthermore, the llama-human chimeric VHH-Fc protein had a similar reduction (~ 40%) of the LDL-c and total cholesterol when compared to the approved evolocumab in transgenic SD rat model, but with low cost. More surprisingly, the chimeric heavy chain antibodies could be persevered for 3 months at room temperature with little loss of the affinity. CONCLUSIONS: Due to the high yield and low cost of Pichia pastoris, lipid-lowering effect and strong stability, the llama-human chimeric antibody (VHH-Fc) offers a potent therapeutic candidate for the control of the serum lipid level.

12.
J Immunol Methods ; 474: 112647, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421082

RESUMO

Cytokeratin 18 (CK18), the main scaffold protein of keratinocyte, is distributed in epithelial cells. This structural protein maintains the integrity and continuity of epithelial tissue. Cytokeratin is also frequently used as an immunohistochemical marker of tumor growth. In recent years, immune repertoire (IR) evaluation using next-generation sequencing (NGS) have become increasingly efficient. Here we deep sequenced the mouse IR of the immunoglobulin heavy chain (IGH) after CK18 immunization. We comprehensively analyzed the IR based on complementarity determining region 3 (CDR3) abundance, germline gene usage polarization, clone diversity, and lineage. We found many convergence characteristics after CK18 immunization. Convergence represents a phenomenon that antigen stimulation or pathogen exposure induces the antigen specific clone expansion and enrichment. The convergence could be used for the immune evaluation and antibody screen. After immunization, the IGHV5 gene clusters became preponderant. The abundance and length of the most frequent CDR3 both increased, nevertheless the IR diversity level decreased. From the convergent IGH repertoires, we selected and expressed six antibodies with the most frequent CDR3s and IGH V-J combinations. The ELISA results suggested all screened six antibodies bound CK18 specifically. The most potential antibody had 9.424E-10M M affinity for the interaction with the CK18. Therefore, this is the NGS platform has been first used for anti-CK18 monoclonal antibodies (MAbs) discovery. These analyses methods could also be used for vaccine evaluation.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Regiões Determinantes de Complementaridade/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/imunologia , Queratina-18/imunologia , Animais , Anticorpos Monoclonais/genética , Afinidade de Anticorpos , Diversidade de Anticorpos , Regiões Determinantes de Complementaridade/genética , Ensaio de Imunoadsorção Enzimática , Sequenciamento de Nucleotídeos em Larga Escala , Imunização , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Queratina-18/administração & dosagem , Masculino , Camundongos Endogâmicos BALB C
13.
Genome Biol ; 20(1): 70, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30961669

RESUMO

Single-cell RNA-seq technologies require library preparation prior to sequencing. Here, we present the first report to compare the cheaper BGISEQ-500 platform to the Illumina HiSeq platform for scRNA-seq. We generate a resource of 468 single cells and 1297 matched single cDNA samples, performing SMARTer and Smart-seq2 protocols on two cell lines with RNA spike-ins. We sequence these libraries on both platforms using single- and paired-end reads. The platforms have comparable sensitivity and accuracy in terms of quantification of gene expression, and low technical variability. Our study provides a standardized scRNA-seq resource to benchmark new scRNA-seq library preparation protocols and sequencing platforms.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA , Análise de Célula Única , Animais , Humanos , Células K562 , Camundongos
14.
Front Microbiol ; 9: 2904, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559728

RESUMO

A total of 32,284 unigenes were obtained from the transcriptome of Alternaria tenuissima, a pathogenic fungus causing foliar disease in tomato, using next-generation sequencing (NGS) technology. In total, 24,670 unigenes were annotated using five databases, including NCBI non-redundant protein, Swiss-Prot, euKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes, and the Gene Ontology. A total of 1,140 simple sequence repeats were also identified for use as molecular markers. Sixteen of the simple sequence repeat loci were selected to study the population structure of A. tenuissima. A population genetic analysis of 191 A. tenuissima isolates, sampled from four geographic regions in China, indicated that A. tenuissima had a high level of genetic diversity, and that the selected simple sequence repeat markers could reliably capture the genetic variation. The null hypothesis of random mating was rejected for all four geographic regions in China. Isolation by distance was observed for the entire data set, but not within clusters, which is indicative of barriers to gene flow among geographic regions. The analyses of Bayesian and principal coordinates, however, did not separate four geographic regions into four separate genetic clusters. The different levels of historical migration rates suggest that isolation by distance did not represent a major biological obstacle to the spread of A. tenuissima. The potential epidemic spread of A. tenuissima in China may occur through the transport of plant products or other factors. The presented results provide a basis for a comprehensive understanding of the population genetics of A. tenuissima in China.

15.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 34(4): 367-372, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29973329

RESUMO

Objective To develop a set of methods of amplifying the natural paring heavy and light chain genes from one single B cell. Methods Yanhuang (YH) cells were the first whole genome sequenced human cells of Asian origin. With the immortalized cell lines as the raw material, single CD19+ B cells were sorted into individual PCR tubes by fluorescence-activated cell sorting (FACS). Then its total RNA was released by the lysis buffer, and reverse transcribed. With the cDNA as the templates, the pairing heavy and light chains from the same B cells were amplified by two-step nested PCRs to acquire their variable region sequences. Results Amplifying methodology has been successfully developed for acquiring single cell BCR genes, and the success rate was greater than 80%. The sorted single B cells could be saved in -80DegreesCelsius for up to two weeks, and then successfully amplified. The PCR products in the same tube were TA-cloned and identified by Sanger sequencing, including the heavy and light chain pairing information. A set of effective primers were reported and released in this study. Conclusion A set of methods were successfully developed for amplifying the natural paring heavy and light genes with the beginning of one single B cell.


Assuntos
Anticorpos Monoclonais/genética , Linfócitos B , Reação em Cadeia da Polimerase , Linhagem Celular , Clonagem Molecular , Primers do DNA , Citometria de Fluxo , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética
16.
Gigascience ; 6(5): 1-11, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327987

RESUMO

Predicting peptide binding affinity with human leukocyte antigen (HLA) is a crucial step in developing powerful antitumor vaccine for cancer immunotherapy. Currently available methods work quite well in predicting peptide binding affinity with HLA alleles such as HLA-A*0201, HLA-A*0101, and HLA-B*0702 in terms of sensitivity and specificity. However, quite a few types of HLA alleles that are present in the majority of human populations including HLA-A*0202, HLA-A*0203, HLA-A*6802, HLA-B*5101, HLA-B*5301, HLA-B*5401, and HLA-B*5701 still cannot be predicted with satisfactory accuracy using currently available methods. Furthermore, currently the most popularly used methods for predicting peptide binding affinity are inefficient in identifying neoantigens from a large quantity of whole genome and transcriptome sequencing data. Here we present a Position Specific Scoring Matrix (PSSM)-based software called PSSMHCpan to accurately and efficiently predict peptide binding affinity with a broad coverage of HLA class I alleles. We evaluated the performance of PSSMHCpan by analyzing 10-fold cross-validation on a training database containing 87 HLA alleles and obtained an average area under receiver operating characteristic curve (AUC) of 0.94 and accuracy (ACC) of 0.85. In an independent dataset (Peptide Database of Cancer Immunity) evaluation, PSSMHCpan is substantially better than the popularly used NetMHC-4.0, NetMHCpan-3.0, PickPocket, Nebula, and SMM with a sensitivity of 0.90, as compared to 0.74, 0.81, 0.77, 0.24, and 0.79. In addition, PSSMHCpan is more than 197 times faster than NetMHC-4.0, NetMHCpan-3.0, PickPocket, sNebula, and SMM when predicting neoantigens from 661 263 peptides from a breast tumor sample. Finally, we built a neoantigen prediction pipeline and identified 117 017 neoantigens from 467 cancer samples of various cancers from TCGA. PSSMHCpan is superior to the currently available methods in predicting peptide binding affinity with a broad coverage of HLA class I alleles.


Assuntos
Antígenos de Neoplasias/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/metabolismo , Peptídeos/metabolismo , Software , Alelos , Antígenos de Neoplasias/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Neoplasias/genética , Peptídeos/genética , Ligação Proteica
17.
PLoS One ; 11(9): e0161801, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588755

RESUMO

Compared to classical antibodies, camel heavy chain antibodies (HCAbs) are smaller in size due to lack of the light chain and the first constant domain of the heavy chain (CH1 region). The variable regions of HCAbs (VHHs) are more soluble and stable than that of conventional antibodies (VHs). Even with such simple structure, they are still functional in antigen binding. Although HCAbs have been extensively investigated over the past two decades, most efforts have been based upon low throughput sequence analysis, and there are only limited reports trying to analyze and describe the complete immune repertoire (IR) of camel HCAbs. Here we leveraged the high-throughput data generated by Next Generation Sequencing (NGS) of the variable domains of the antibody heavy chains from three Bactrian camels to conduct in-depth comparative analyses of the immunoglobulin repertoire. These include analyses of the complementary determining region 3 (CDR3) length and distribution, mutation rate, antibody characteristic amino acids, the distribution of the cysteine (Cys) codons, and the non-classical VHHs. We found that there is higher diversity in the CDR2 than in the other sub-regions, and there is a higher mutation rate in the VHHs than in the VHs (P < 0.05). In addition to substitutions at amino acid (AA) residue positions NO.49/50/52 between VH and VHH clones, we also observed other substitutions at the positions NO.40/54/57/96/101 that could lead to additional structural alterations. We also found that VH-derived VHH clones, referred to as non-classical VHH clones in this study, accounted for about 8% of all clones. Further, only 5%-10% clones had the Trp > Arg AA substitution at the first position of framework 4 for all types of clones. We present, for the first time, a relatively complete picture of the Bactrian camel antibody immune repertoire, including conventional antibody (Ab) and HCAbs, using PCR and in silico analysis based on high-throughput NGS data.


Assuntos
Genes de Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Animais , Camelus , Sequenciamento de Nucleotídeos em Larga Escala
18.
Assay Drug Dev Technol ; 5(2): 191-203, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17477828

RESUMO

T-type Ca(2+) channels encoded by voltage-gated Ca(2+) channel (Ca(v)) 3.1, 3.2, and 3.3 genes play important physiological roles and serve as therapeutic targets for neurological and cardiovascular disorders. Currently there is no selective T-channel blocker. To screen for such a blocker, we developed three stable cell lines expressing human recombinant Ca(v)3.1, 3.2, or 3.3 channels and then examined their usefulness in high throughput screens. All three cell lines displayed an increase in intracellular Ca(2+) in response to changes in extracellular Ca(2+) as detected with Ca(2+)-sensitive dyes using a fluorometric imaging plate reader (FLIPR [Molecular Devices, Sunnyvale, CA] or FlexStation [Molecular Devices]). The signal-to-noise ratio was 2-4. Co-expression of Ca(v)3.2 with a mouse leak K(+) channel, which by virtue of being open at rest hyperpolarizes the cell membrane, blocked the fluorescent signal. Co-addition of KCl to these cells induced a Ca(2+) signal that was similar to that observed in the cell line expressing Ca(v)3.2 alone. These results confirm that the detection of intracellular Ca(2+) increase in cells expressing Ca(v)3.2 alone results from Ca(2+) entry through channels that are open at the resting membrane potential of each cell line (i.e., window currents). Testing known drugs on Ca(v)3 channels showed that block could be reliably detected using the FlexStation assay, FLIPR assay, or voltage clamp recordings using the IonWorks HT system (Molecular Devices). These results support the use of the FLIPR window current assay for primary drug screening and high throughput patch recordings for secondary screening of novel T-channel blockers.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Algoritmos , Cálcio/metabolismo , Canais de Cálcio Tipo T/genética , Linhagem Celular , Corantes , Interpretação Estatística de Dados , Avaliação Pré-Clínica de Medicamentos , Fluorometria , Humanos , Mibefradil/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Controle de Qualidade , Reprodutibilidade dos Testes , Temperatura
19.
J Biomol Screen ; 11(5): 488-96, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16760372

RESUMO

Present whole-cell patch-clamp methodology has only moderate consistency and throughput, rendering impractical functional measurements on large numbers of ion channel ligands or on large numbers of unknown or mutant channel genes. In the population patch clamp (PPC) described herein, a single voltage-clamp amplifier sums the whole-cell currents from multiple cells at once, each sealed to a separate aperture in a planar substrate well. The resulting ensemble currents are more consistent from well to well, and the success rate for each recording attempt is >95%. The PPC was implemented by modifying the PatchPlate substrate and amplifiers in the IonWorks patch-clamp instrument. The increased data consistency and likelihood of a successful recording in each well, combined with 384-well measurements in parallel, allow the direct electrophysiological recording of thousands of ensemble ionic currents per day. Therapeutic groups in drug discovery programs require this order of throughput to screen directed compound libraries against ion channel targets. The potential for studying the function of large numbers of ion channel mutants may be realized with the technique. The procedure incorporates subtraction methods that correct for expected distortions and also reliably produces data that agree with previous patch-clamp studies.


Assuntos
Eletrofisiologia/métodos , Técnicas de Patch-Clamp/métodos , Técnicas de Patch-Clamp/normas , 4-Aminopiridina/farmacologia , Animais , Células CHO , Permeabilidade da Membrana Celular/efeitos dos fármacos , Simulação por Computador , Cricetinae , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Canal de Potássio Kv1.3/efeitos dos fármacos , Canal de Potássio Kv1.3/metabolismo , Lidocaína/farmacologia , Modelos Biológicos , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5 , Canais de Potássio de Domínios Poros em Tandem/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Reprodutibilidade dos Testes , Canais de Sódio/efeitos dos fármacos , Canais de Sódio/metabolismo , Tetracaína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA