Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Med Res ; 27(1): 29, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209947

RESUMO

BACKGROUND: The incidence of thyroid cancer, a most common tumor in the endocrine system, has increased in recent years. A growing number of studies have focused on the molecular mechanisms of thyroid cancer subtypes, aiming to identify effective therapeutic targets. Endocytosis is of vital significance in the malignant development of tumors, although its involvement in thyroid cancer has been rarely reported. METHODS: HIP1R expressions in thyroid cancer from the TCGA database were analyzed by UALCAN software. Thyroid epithelial and cancer cell lines were cultured in vitro. Western blotting and quantitative PCR were used to analyze protein and mRNA levels, respectively. Cell viability was measured by CCK-8 assay. Immunofluorescence staining indicated protein distribution in cell. Co-immunoprecipitation was used to study protein-protein interaction. Immunohistochemical staining was used to analyze protein expression in clinical tissues. Differences between groups were compared using the two-tailed Student's t test, and those among three or more groups were compared by one-way or two-way ANOVA. RESULTS: In the present study, HIP1R (Huntingtin Interacting Protein 1 Related) was found upregulated in thyroid cancer tissues and cell lines compared with that in the controls, while knockdown of HIP1R significantly inhibited the proliferation of thyroid cancer cells. Since HIP1R is essential for the clathrin-dependent endocytic process, we thereafter explored the effect of HIP1R on the endocytosis of thyroid cancer cells. Interestingly, knockdown of HIP1R significantly reduced the number of clathrin-coated pits (CCPs) in thyroid cancer cells. In addition, the interaction between HIP1R and PTEN (phosphatase and tensin homolog) was identified in thyroid cancer cells. Knockdown of HIP1R downregulated intracellular PTEN in thyroid cancer cells, but upregulated membrane-binding PTEN. Notably, flurbiprofen, a commonly used analgesic, significantly inhibited the proliferation of thyroid cancer cells and interfered with the interaction between HIP1R and PTEN, thereby enhancing the binding of PTEN to cell membrane. However, the proliferation inhibitory effect of flurbiprofen was attenuated when knocking down HIP1R or PTEN. CONCLUSIONS: Upregulated HIP1R in thyroid cancer cells promotes cell proliferation and mediates the endocytosis of PTEN. Flurbiprofen may exert an anti-tumor effect on thyroid cancer by blocking the interaction between HIP1R and PTEN.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Flurbiprofeno/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/genética , RNA Neoplásico/genética , Neoplasias da Glândula Tireoide/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proliferação de Células , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Humanos , Proteínas dos Microfilamentos/biossíntese , Transdução de Sinais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
2.
Oncol Lett ; 21(6): 434, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33868472

RESUMO

MicroRNA (miR)-199a-5p expression is downregulated in a variety of malignancies, including non-small cell lung cancer (NSCLC), and its low expression is associated with a poor prognosis. However, to the best of our knowledge, the mechanism underlying miR-199a-5p downregulation in NSCLC and its target effectors remain to be elucidated. The present study revealed the downregulation of miR-199a-5p expression in NSCLC tissues and cell lines compared with in para-carcinoma tissues and a lung epithelial cell line. Further experiments indicated that the methylation levels of the miR-199a promoter were markedly higher in NSCLC tissues compared with in para-carcinoma tissues. The DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine markedly increased the expression levels of miR-199a-5p in NSCLC cells. Furthermore, it was identified that miR-199a-5p mimics transfection decreased the expression levels of A-kinase anchoring protein 1 (AKAP1) at both the mRNA and protein levels by targeting the 3' untranslated region of AKAP1 mRNA. The in vitro experiments demonstrated that miR-199a-5p overexpression inhibited the proliferation and tumorigenicity of NSCLC cells, whereas overexpression of AKAP1 partially recovered the malignant phenotypes, suggesting that AKAP1 may be a downstream effector targeted by miR-199a-5p. Collectively, the present findings indicated that miR-199a-5p may be a novel regulator of AKAP1, and that miR-199a-5p may be a potential tumor suppressor in NSCLC.

3.
Biosci Rep ; 40(3)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32091104

RESUMO

Acute lung injury (ALI) is a lethal disease with diffuse lung inflammation, in which JAK/STAT3 signaling has been well recognized for its role in initiating and amplifying inflammatory processes. However, the mechanism for the enhancement and maintenance of signal transducer and activator of transcription 3 (STAT3) activation has not yet been clearly demonstrated in ALI. In the present work, we established a lipopolysaccharide (LPS)-induced ALI rat model through intratracheal instillation and isolated the alveolar macrophages (AMs) from the rats in the model. We demonstrated that the expression of Kruppel-like factor 2 (KLF2) significantly decreased in the AMs from LPS-induced ALI rats (LPS-AMs) as compared with the AMs from control rats (NC-AMs). Overexpressing KLF2 in LPS-AMs inhibited the phosphorylation of STAT3 and reduced the levels of STAT3 target genes, including matrix metalloproteinase (MMP)-2/9 (MMP-2/9). Further investigation indicated that KLF2 trans-inhibited heat shock protein H1 (HSPH1), which interacted with STAT3 and enhanced its phosphorylation. As a crucial inflammatory mediator in ALI, interleukin-1ß (IL-1ß) induced the down-regulation of KLF2 in LPS-AMs, as interrupting IL-1ß signaling in LPS-AMs by antibody neutralization or IL1R1 knockdown rescued the expression of KLF2. Consistently, stimulating NC-AMs with IL-1ß decreased KLF2 and increased HSPH1, while overexpression of KLF2 suppressed IL-1ß-induced HSPH1. Additionally, in vivo studies showed that treatment with an IL-1ß antibody or HSPH1 inhibitor alleviated lung injury in ALI rats, as well as decreased the levels of p-STAT3 and MMP-2/9. In conclusion, activation of the IL-1ß/KLF2/HSPH1 pathway facilitated STAT3 phosphorylation in AMs, which exacerbated pulmonary inflammation in ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Interleucina-1beta/metabolismo , Macrófagos Alveolares/metabolismo , Fator de Transcrição STAT3/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/fisiologia , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fosforilação , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
4.
Biochem Biophys Res Commun ; 517(1): 89-95, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301770

RESUMO

Alveolar epithelial type II cells (ATII cells) are the main target cells being damaged and releasing the inflammatory mediators during acute respiratory distress syndrome (ARDS). Extensive apoptosis of epithelial cells leads to the breakdown of the alveolar-epithelial barrier in ARDS. Cyclooxygenase-2 (COX-2) plays an important role in pulmonary inflammatory response. Dexmedetomidine (DEX), a potent selective α2 adrenergic receptor (α2-AR) agonist, presents sedative, anxiolytic, and analgesic effects for anesthetic procedures. DEX has anti-apoptotic and anti-inflammatory properties. Our study demonstrated that DEX exerted anti-apoptotic effect on primary human epithelial cells with the inhibition of caspase activation, which was partly via the α2AR/PI3K/AKT pathway. Moreover, DEX significantly reduced the expression of COX-2 as well as prostaglandinE2 (PGE2) and tumor necrosis factor-α (TNF-α) production induced by lipopolysaccharide (LPS). Our next step is to determine whether DEX can regulate apoptosis in animal models. These results suggest DEX may be a promising therapy for preventing and treating ARDS as well as chronic diseases by directly targeting epithelial cell actions.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Ciclo-Oxigenase 2/imunologia , Dexmedetomidina/farmacologia , Células Epiteliais Alveolares/imunologia , Células Cultivadas , Ciclo-Oxigenase 2/análise , Humanos , Lipopolissacarídeos/imunologia
5.
Cell Mol Biol Lett ; 23: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410547

RESUMO

BACKGROUND: Pulmonary inflammation and endothelial barrier permeability increase in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) induced by pro-inflammatory cytokines and matrix metalloproteinases (MMPs). However, the relationship between pro-inflammatory cytokines and MMPs in ALI/ARDS remains poorly understood. METHODS: A lipopolysaccharide (LPS)-induced ALI rat model was established through intratracheal instillation. The wet/dry ratios of lung tissues were measured, and bronchoalveolar lavage fluid (BALF) was collected to test protein concentrations, total cell/macrophage numbers, and pro-inflammatory cytokine levels. LPS-treated alveolar macrophages were utilized in in vitro experiments. The expression and secretion of MMPs were respectively detected using quantitative PCR, Western blotting and ELISA assays. RESULTS: The levels of IL-33 and MMP2/9 in BALF increased in all the ALI rats with severe lung injury. LPS-induced IL-33 autocrine upregulated the expression of MMP2 and MMP9 through activating STAT3. Neutralizing IL-33 in culture medium with specific antibodies suppressed the expression and secretion of MMP2 and MMP9 in LPS-treated alveolar macrophages. Consistently, eliminating IL-33 decreased the levels of MMP2 and MMP9 in BALF and alleviated lung injury in ALI rats. CONCLUSION: The IL-33/STAT3/MMP2/9 regulatory pathway is activated in alveolar macrophages during acute lung injury, which may exacerbate the pulmonary inflammation.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Interleucina-33/metabolismo , Macrófagos Alveolares/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator de Transcrição STAT3/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos Alveolares/patologia , Masculino , Testes de Neutralização , Ratos Wistar , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Oncol Rep ; 37(5): 2611-2619, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28426124

RESUMO

Tumor hypoxia has been recognized as a characteristic of the tumor microenvironment and promotes metastasis in a variety of types of cancer. However, in lung cancer, the role of hypoxia-inducible factor 1α (HIF-1α) in modulating the cellular response to the inflammation-related microenvironment remains unclear. In the present study, enhanced expression of HIF-1α accompanied by an increased ROS level was observed in lipopolysaccharide (LPS)-stimulated non-small cell lung cancer (NSCLC) cells. In addition, propofol, a general anesthetic, was found to significantly reduce the LPS-induced upregulation of HIF-1α and ROS in a dose-dependent manner. Further study showed that propofol may antagonize the role of LPS in activating HIF-1α through attenuating the protein stability and nuclear localization of HIF-1α. Moreover, knockdown of HIF-1α attenuated expression of mesenchymal marker, vimentin, but promoted the expression of epidermal marker, E-cadherin, in the LPS-treated NSCLC cells. Notably, LPS-induced epithelial-to-mesenchymal transition (EMT) was notably suppressed by propofol treatment. Consistently, a wound healing assay revealed that propofol abrogated LPS-stimulated migration of NSCLC cells while overexpression of HIF-1α reversed the effects of propofol. Similarly, we investigated the influence of propofol on the invasive capability of NSCLC cells. Western blot and RT-PCR analyses indicated that both knockdown of HIF-1α and treatment of propofol attenuated the LPS-activated expression of MMP2 and MMP9 which are necessary for tumor invasion. However, results from the Transwell assay confirmed that propofol also suppressed cell invasion by decreasing HIF-1α expression in the LPS-treated NSCLC cells. Analysis of clinical specimens demonstrated abnormal expression of HIF-1α in NSCLC tissues and a poor prognosis in patients with elevated HIF-1α expression. Thus, the present study suggests a potential strategy for NSCLC by targeting HIF-1α.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Lipopolissacarídeos/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Propofol/farmacologia , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Núcleo Celular/genética , Relação Dose-Resposta a Droga , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
7.
Exp Ther Med ; 12(1): 463-468, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347079

RESUMO

Postoperative cognitive dysfunction (POCD), a common clinical in aged patients, is characterized by deficits in cognitive functions in patients following anesthesia and surgery. It has been demonstrated that isoflurane may lead to cognitive impairment in aged rats; however, effective clinical interventions for preventing this disorder are limited. Tumor necrosis factor (TNF)-α has been suggested to be involved in neuroinflammation as well as the development of POCD. Accordingly, the present study aimed to investigate whether TNF-α signaling is involved in the isoflurane-induced cognitive impairment in aged rats, and whether TNF-α receptor antagonist are able to attenuate isoflurane-induced cognitive impairment in aged rats. A population of 20-month-old rats were administered TNF-α receptor antagonist R-7050 or an equal volume of saline by intraperitoneal injection 12 h prior to exposure to isoflurane to model cognitive impairment following anesthesia in old patients. Then the rats were exposed to 1.3% isoflurane for 4 h. In the control group, rats showed impaired cognitive functions evaluated by Morris water maze assay after isoflurane exposure. Furthermore, isoflurane exposure induced marked upregulation of proinflammatory cytokines, including interleukin (IL)-1ß, TNF-α, IL-6 and IL-8 in the hippocampus tissue. In the experimental group, intracisternal administration of TNF-α receptor antagonist R-7050 significantly attenuated isoflurane-induced cognitive impairment and upregulation of proinflammatory cytokines. Further investigation revealed that intracisternal administration of TNF-α receptor antagonist R-7050 notably suppressed isoflurane-induced activation of NF-κB and MAPK signaling. Collectively, the present results suggest that TNF-α receptor antagonist may serve as a potential agent for the prevention of anesthesia-induced cognitive decline in aged patients.

8.
Cell Biochem Biophys ; 70(3): 1527-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25074530

RESUMO

This study is aimed to investigate the efficacy and underlying the mechanism of propofol in treatment of ischemia reperfusion (IR)-induced lung injury in rats, providing a novel insight of therapeutic strategy for IR-induced lung injury. 120 healthy SD rats were selected and randomly divided into sham operation group, IR group, and propofol group (40 rats per group). Bronchoalveolar lavage fluid (BALF) protein content, serum protein content, lung permeability index, lung water content rate, methane dicarboxylic aldehyde (MDA) in lung tissue, superoxide dismutase (SOD), nitric oxide (NO), endothelin (ET-1), toll-like receptor 4 (TLR4), nuclear factor (NF-κB), and tumor necrosis factor-α (TNF-α) were examined and compared among different groups to evaluate the therapeutical effects of propofol on IR-induced lung injury and analyze the mechanism. In sham operation group, neither change in lung tissue nor pulmonary interstitial edema or alveolar wall damage was found under microscope; in IR group, marked pulmonary interstitial edema and alveolar wall damage complicated with inflammatory cell infiltration and hemorrhage were found; in propofol group, alveolar wall widening was observed, however, hemorrhage in alveolar cavity, inflammatory infiltration and tissue damage were less significant than in IR group. At 3 h after reperfusion, BALF protein content, lung permeability index, and lung water content rate were all significantly increased in IR group and propofol group, while the serum protein content was significantly lower than sham operation group (p < 0.05). Moreover, we found that the change of above parameters in propofol group was less significant than in IR group (p < 0.05). No statistically significant difference was found in ET-1 levels in different groups (p > 0.05). In contrast, MDA and NO in IR group and propofol group were significantly increased, while SOD activity was significantly decreased (p < 0.05). Furthermore, the change of above parameters in propofol group was less significant than in IR group (p < 0.05). In addition, mRNAs of TLR4, NF-κB, and TNF-α were significantly increased in IR group and propofol group (p < 0.05) with more significant change in IR group compared with propofol group (p < 0.05). Propofol has protective effects against IR-induced lung injury by improving activity of oxygen radical and restoring NO/ET-1 dynamic balance. Besides, regulation of TLR4, NF-κB, and TNF-α by propofol also play important role in alleviating IR-induced lung injury.


Assuntos
Citocinas/imunologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Propofol/administração & dosagem , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/fisiopatologia , Animais , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Medicamentos para o Sistema Respiratório/administração & dosagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA