Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(10): 17048-17057, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858897

RESUMO

AlGaN-based ultraviolet-C (UV-C) light-emitting diodes (LEDs) face challenges related to their extremely low external quantum efficiency, which is predominantly attributed to the remarkably inadequate transverse magnetic (TM) light extraction efficiency (LEE). In this study, we employ angle-resolved cathodoluminescence (ARCL) spectroscopy to assess the optical polarization of (0001)-oriented AlGaN multiple quantum well (MQW) structures in UV-C LEDs, in conjunction with a focused ion beam and scanning electron microscopy (FIB/SEM) system to etch samples with various inclination angles (θ) of sidewall. This technique effectively distinguishes the spatial distribution of TM- and transverse electric (TE)-polarized photons contributing to the luminescence of the MQW structure. CL spectroscopy confirms that UV-C LEDs with a θ of 35° exhibit the highest CL signal compared to samples with other θ. Furthermore, we establish a model using finite difference time domain (FDTD) simulation to validate the mechanism of the outcomes. The complementary contribution of TM and TE photons at different specific angles are distinguished by ARCL and confirmed by simulation. At angles near the sidewall, the CL is dominated by the TM photons, which mainly contribute to the increased LEE and the decreased degree of polarization (DOP) to make the spatial distribution of CL more uniform. Additionally, this method allows us to analyze the polarization of light without the need for polarizers, enabling the differentiation of TE and TM modes. This distinction provides flexibility for selecting different emission mode based on various application requirements. The presented approach not only opens up new opportunities for enhanced UV-C light extraction but also provides valuable insights for future endeavors in device fabrication and epitaxial film growth.

2.
Opt Express ; 31(12): 20265-20273, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381425

RESUMO

The degradation of AlGaN-based UVC LEDs under constant temperature and constant current stress for up to 500 hrs was analyzed in this work. During each degradation stage, the two-dimensional (2D) thermal distributions, I-V curves, optical powers, combining with focused ion beam and scanning electron microscope (FIB/SEM), were thoroughly tested and analyzed the properties and failure mechanisms of UVC LEDs. The results show that: 1) the opto-electrical characteristics measured before/during stress indicate that the increased leakage current and the generation of stress-induced defects increase the non-radiative recombination in the early stress stage, resulting in a decrease in optical power; 2) the increase of temperature caused by the deterioration of the Cr/Al layer of p-metal after 48 hrs of stress aggravates the optical power in UVC LEDs. The 2D thermal distribution in conjunction with FIB/SEM provide a fast and visual way to precisely locate and analyze the failure mechanisms of UVC LEDs.

3.
Bull Math Biol ; 84(10): 104, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35986819

RESUMO

We developed a framework based on the software Unstructured Reaction-Diffusion Master Equation (URDME) to address tumor cells' proliferation and migration in a heterogeneous space, herein a 2D percolation cluster. A mitogenic paracrine signaling pathway is utilized phenomenologically to reveal how cells cooperate with one another. We modeled the emerging Allee effect using low seeding density culture (LSDC) assays to fit the model parameters. A Finite time scaling (FTS) function has been formulated to quantitatively analyze invasiveness of a virtual Growth-Migration (GM) system in mimicking the cancer cell growth. Through such simulation, we analyzed the GM dynamics of virtual model in mimicking the growth of BT-474 cancer cell populations in vitro in a 2D percolation cluster and calculated the successful penetration rate (SPR). By analyzing the temporal trajectories of the SPR, we could determine the critical exponents of the critical SPR scaling relation. The SPR transition point ([Formula: see text]), which is a fundamentally different from a conventional percolation transition point, is found to be negatively correlated with the invasiveness of this cancer cell. The [Formula: see text] of the three variations of the virtual GM system distinctly designated by varying paracrine-regulated Allee (PAllee) model phenotypes is 0.3408, 0.3675, and 0.4454, respectively. FTS algorithm thereon may serve as an approach to quantify invasiveness of tumor cells. Through a phenomenological paracrine model, inter-cell cooperation and mutual mitogenic boosting are enabled to elicit the Allee effect in the GM systems. The rationale behind such computationally tunable virtual mechanism can be applied to other circumstances concerning emerging processes.


Assuntos
Conceitos Matemáticos , Modelos Biológicos , Algoritmos , Simulação por Computador , Difusão
4.
ACS Appl Mater Interfaces ; 11(44): 41069-41081, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31599161

RESUMO

Gold nanorods, mesoporous silica, gadolinia, folic acid, and polyethylene glycol (PEG) derivatives have been investigated due to their own advantages in cancer theranostics. However, it remains a great challenge to assemble these components into a stable unity with the diverse and enhanced functionality for more potential applications. Herein, as inspired by the first-principles calculation, a highly stable and safe all-in-one nanoprobe is fabricated via a novel nanoassembly strategy. Multiscale calculations were performed to address the atomistic bonding of a nanoprobe, heat necrosis of a tumor adjacent to the vasculature, and thermal diffusion in a photothermal circumstance, respectively. The nanoprobe gains an 8-fold increase in magnetic resonance imaging (MRI) relaxivity compared to the clinical gadolinium diethylenetriaminepentaacetate, achieving a significant MRI signal in vivo. Conjugated with folate-PEG, the nanoprobe can be effectively absorbed by tumoral cells, obtaining a vivid two-photon cell imaging. A specific multisite scheme for photothermal therapy of a solid tumor is proposed to improve low photothermal efficacy caused by thermal diffusion in a large tumor, leading to the successful cure of the mice with xenograft tumor sized 10-12 mm. In vitro and in vivo toxicity, long-term excretion data, and the recovery of the treated mice demonstrate that the theranostic nanoprobe possesses good biocompatibility and metabolism efficacy.


Assuntos
Magnetismo , Nanotubos/química , Neoplasias/terapia , Fármacos Fotossensibilizantes/química , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Ácido Fólico/química , Gadolínio/química , Ouro/química , Humanos , Raios Infravermelhos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Polietilenoglicóis/química , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química
5.
Phys Rev E ; 99(4-1): 042401, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31108584

RESUMO

To investigate the proliferation and invasion of a tumor within an inhomogeneous matrix, we studied the spatiotemporal dynamics of two types of growth-diffusion systems (GDSs) with logistic or Allee growth occurring on a two-dimensional square site percolation lattice via numerical computation and finite-size scaling approaches. A critical percolation threshold exists in the two systems, but becomes obscure with an increasing Allee effect in Allee growth. The two systems evidently differ in their short-time spatiotemporal patterns: The tumor number density in the logistic model grows and spreads continuously and subdiffusively or weakly superdiffusively while that in the Allee model does so discretely and strongly superdiffusively. This difference is attributed to a lack of cooperation between sites for growth and diffusion in the logistic model as compared to its Allee counterpart. The Allee growth pattern is characterized by a rougher border and more inhomogeneous interior than its logistic counterpart. Judging from their growth-diffusion feature in combination with a clinical image analysis, we conclude that Allee growth is more suitable for modeling the proliferation and invasion of an early-stage malignant tumor than is logistic growth. A phase diagram that correlates a tumor's growth and diffusion on a percolation lattice with a site occupation fraction and Allee effect was established to reveal the sensitivity on proliferation and spreading of a tumor towards the above parameters. The Allee effect was also found to induce diverse dynamic features on its short-time growth and diffusion in the GDS, which brings in an opposite trend toward a tumor's growth and diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA