Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209973

RESUMO

In maize, the ear shank is a short branch that connects the ear to the stalk. The length of the ear shank mainly affects the transportation of photosynthetic products to the ear, and also influences the dehydration of the grain by adjusting the tightness of the husks. However, the molecular mechanisms of maize shank elongation have rarely been described. It has been reported that the maize ear shank length is a quantitative trait, but its genetic basis is still unclear. In this study, RNA-seq was performed to explore the transcriptional dynamics and determine the key genes involved in maize shank elongation at four different developmental stages. A total of 8145 differentially expressed genes (DEGs) were identified, including 729 transcription factors (TFs). Some important genes which participate in shank elongation were detected via function annotation and temporal expression pattern analyses, including genes related to signal transduction hormones (auxin, brassinosteroids, gibberellin, etc.), xyloglucan and xyloglucan xyloglucosyl transferase, and transcription factor families. The results provide insights into the genetic architecture of maize ear shanks and developing new varieties with ideal ear shank lengths, enabling adjustments for mechanized harvesting in the future.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Zea mays/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Fenótipo , Proteínas de Plantas/genética , Locos de Características Quantitativas , Fatores de Transcrição , Zea mays/genética
2.
Huan Jing Ke Xue ; 40(3): 1375-1381, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087987

RESUMO

A synthetic wastewater was employed to investigate the realization of short-cut nitrification and its phosphorus removal performance in a CAST reactor operated at 22℃, 25℃, and 28℃. The results showed that TN removal of the system was stable and higher than 80% at different temperatures, and NH4+-N removal performed well. When the temperature was at 22℃ and 25℃, nitrite accumulation was not observed in the system and the phosphorus removal rate were 94.3% and 86.9%, respectively. When the temperature was increased to 28℃, nitrite accumulation efficiency in the reactor reached 87.2%, implying the system achieved a stable short-cut nitrification. In addition, in the short-cut nitrification stage at high temperature (28℃), the phosphorus release and uptake capacity of the system decreased. The anaerobic phosphorus release/COD consumption (P/C) ratio was much lower compared those at 22℃ and 25℃. However, the phosphorus removal performance of the reactor did not deteriorate at this stage. The phosphorus removal rate was 68.9%, indicating that a sufficient carbon source in the influent could not only guarantee the removal of TN, but also detoxify NO2- to reduce its inhibitory effect on the phosphate accumulating organisms (PAOs). The batch tests of phosphorus uptake by the sludge under different temperature conditions revealed that O2, NO3-, and NO2- could all be used as electron acceptors for phosphorus uptake. The aerobic phosphorus uptake rate was higher than that with NO3- and NO2- as electron acceptors. The phosphorus uptake rates of O2 and NO3- as electron acceptors were also found to be negatively correlated with temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA