Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
ChemSusChem ; : e202400569, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773704

RESUMO

In practical operating conditions, the lithium deposition behavior is often influenced by multiple coupled factors and there is also a lack of comprehensive and long-term validation for dendrite suppression strategies. Our group previously proposed an intermittent lithiophilic model for high-performance three-dimensional (3D) composite lithium metal anode (LMA), however, the electrodeposition behavior was not discussed. To verify this model, this paper presents a modified 3D carbon cloth (CC) backbone by incorporating NiFe2O4/Fe2O3 (NFFO) nanoparticles derived from bimetallic NiFe-MOFs. Enhanced Li adsorption capacity and lithiophilic modulation were achieved by bimetallic MOFs-derivatives which prompted faster and more homogeneous Li deposition. The intermittent model was further verified in conjunction with the density functional theory (DFT) calculations and electrodeposition behaviors. As a result, the obtained Li-CC@NFFO||Li-CC@NFFO symmetric batteries exhibit prolonged lifespan and low hysteresis voltage even under ultra-high current and capacity conditions (5 mA cm-2, 10 mAh cm-2), what's more, the full battery coupled with a high mass loading (9 mg cm-2) of LiFePO4 cathode can be cycled at a high rate of 5C, the capacity retention is up to 95.2% before 700 cycles. This work is of great significance to understand the evolution of lithium dendrites on the 3D intermittent lithiophilic frameworks.

2.
Chemistry ; : e202401272, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682719

RESUMO

Heterogeneous interface and defect engineering offer effective pathways to accelerate oxygen evolution reaction (OER) charge transfer kinetics and motivate optimal intrinsic catalytic activity. Herein, we report the lattice-matched NiO/NiFe2O4 heterostructure with ample oxygen vacancies (Vo-NiO/NiFe2O4) induced by a feasible hydrothermal followed by calcination and plasma-engraving assistant technique, which shows the unique porous microflower arrangement of intertwined nanosheets. Benefitting from the synergetic effects between lattice-matched heterointerface and oxygen vacancies induce the strong electronic coupling, optimized OH-/O2 diffusion pathway and ample active sites, thus-prepared Vo-NiO/NiFe2O4 presents a favorable OER performance with a low overpotential (261 mV @ 10 mA cm-2) and small Tafel slope (39.4 mV dec-1), even surpassing commercial RuO2 catalyst. Additionally, the two-electrode configuration water electrolyzer and rechargeable zinc-air battery assembled by Vo-NiO/NiFe2O4 catalyst show the potential practical application directions. This work provides an innovative avenue for strengthening OER performance toward water electrolysis and Zn-air batteries via the interface and vacancy engineering strategy.

3.
J Colloid Interface Sci ; 657: 428-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056047

RESUMO

The proton exchange membrane (PEM) fuel cell is a device that demonstrates a significant potential for environmental sustainability, since it efficiently converts chemical energy into electrical energy. The microporous layer (MPL) in PEM fuel cells promotes gas transport and eliminates water. Nevertheless, the power density of PEM fuel cells is restricted by ohmic losses and mass transport losses in conventional MPLs. In this study, we enhanced the power density of proton exchange membrane (PEM) fuel cells through the identification of appropriate materials and the mitigation of mass transport losses occurring at the interface between the microporous layer and the catalyst layer. The incorporation of high electron conductivity, slip behavior at the interface between graphene and water, and rapid water evaporation facilitated by nanoporous graphene effectively address transport-related challenges. We evaluated two types of graphene as potential substitutes for carbon black in the microporous layer (MPL). The enhanced power density (up to 1.1 W cm-2) under all humidity conditions and reduced mass transport resistance (a 75 % reduction compared to carbon black MPL) make them promising candidates for next-generation PEM fuel cells. Furthermore, these findings provide guidance for controlling interfacial mass transport in colloidal systems.

4.
J Colloid Interface Sci ; 657: 46-53, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38029528

RESUMO

Lithium-oxygen batteries (LOBs) with a theoretical energy density of up to 3500 Wh kg-1 hold a promise for the next-generation high-energy-density batteries. However, the slow oxygen reduction/evolution kinetics at the cathode limits the performance of Li-air batteries. The rational design of efficient catalysts is essential for the improvement of oxygen electrode reaction kinetics. Herein, we report a facile strategy to co-dope N and P atoms simultaneously into Ti3C2Tx (NP-Ti3C2Tx) MXene via an electrostatic self-assembly approach. The co-doped NP-Ti3C2Tx layers expose abundant active sites, providing more space for accommodating the formed Li2O2. Moreover, the N and P co-doping facilitates efficient electron transport in Ti3C2Tx MXene. The LOB with NP-Ti3C2TX catalyst delivers a high discharge capacity of 24,940 mAh/g at 1000 mA g-1. At a cut-off capacity of 1000 mAh/g, this battery runs continuously for 159, 276, 185, and 229 cycles at current densities of 1000, 2000, 3000, and 5000 mA g-1, respectively. Theoretical calculations unveil that N and P co-doping enables lower ηORR and ηOER of only 0.26 V and 0.13 V on Ti3C2Tx MXene, respectively. This work offers a feasible approach for constructing efficient MXene electrocatalysts for Li-air batteries.

6.
Polymers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139926

RESUMO

The objective of this research was to develop highly effective conductive polymer composite (CPC) materials for flexible piezoresistive sensors, utilizing hollow three-dimensional graphitic shells as a highly conductive particulate component. Polystyrene (PS), a cost-effective and robust polymer widely used in various applications such as household appliances, electronics, automotive parts, packaging, and thermal insulation materials, was chosen as the polymer matrix. The hollow spherical three-dimensional graphitic shells (GS) were synthesized through chemical vapor deposition (CVD) with magnesium oxide (MgO) nanoparticles serving as a support, which was removed post-synthesis and employed as the conductive filler. Commercial multi-walled carbon nanotubes (CNTs) were used as a reference one-dimensional graphene material. The main focus of this study was to investigate the impact of the GS on the piezoresistive response of carbon/polymer composite thin films. The distribution and arrangement of GS and CNTs in the polymer matrix were analyzed using techniques such as X-ray diffraction and scanning electron microscopy, while the electrical, thermal, and mechanical properties of the composites were also evaluated. The results revealed that the PS composite films filled with GS exhibited a more pronounced piezoresistive response as compared to the CNT-based composites, despite their lower mechanical and thermal performance.

7.
Front Genet ; 14: 1281601, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028584

RESUMO

Local sheep in the northeastern Tarim Basin can adapt to dry and low-rainfall regional environments. In this study, three local sheep breeds in the northeastern Tarim Basin, LOP (LOP) sheep, Bayinbuluke (BYK) sheep, and Kunlun (KUN, also known as the Qiemo sheep) sheep, and three introduced sheep breeds, Suffolk (SUF) sheep, Dorset (APD) sheep, and Texel (TEX) sheep, were analyzed for genetic diversity, population structure, and selective signature using the Illumina OvineSNP50K BeadChip. We found that LOP, BYK, and KUN had lower observed heterozygosity and expected heterozygosity than TEX, SUF, and ADP, which were differentiated based on geographic distribution. We performed fixation index (FST) analysis on three local sheep breeds in the northeastern Tarim Basin (LOP, BYK, and KUN) and introduced sheep breeds (TEX, SUF, and ADP) to measure genetic differentiation. Nucleotide diversity (PI) analysis was performed on single-nucleotide polymorphism (SNP) data of LOP, BYK, and KUN. A total of 493 candidate genes were obtained by taking the intersection at a threshold of 5%. Among them, SMAD2, ESR2, and HAS2 were related to reproductive traits. PCDH15, TLE4, and TFAP2B were related to growth traits. SOD1, TSHR, and DNAJB5 were related to desert environmental adaptation. Analyzing the genetic patterns of local sheep in the northeastern Tarim Basin can protect the germplasm resources of local sheep and promote the development and utilization of sheep genetic resources.

8.
Cell Death Discov ; 9(1): 385, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863897

RESUMO

Maladaptive repair of acute kidney injury (AKI) is associated with a high risk of developing chronic kidney disease deemed irremediable even in present days. When AKI arises from ischemia-reperfusion injury, hypoxia usually plays a major role. Although both hypoxia-inducible factor-1α (HIF-1α) and yes-associated protein (YAP) have been proven to promote renal cell survival under hypoxia, there is a lack of research that studies the crosstalk of the two and its effect on kidney repair. In studying the crosstalk, CoCl2 was used to create a mimetic hypoxic environment. Immunoprecipitation and proximity ligation assays were performed to verify protein interactions. The results show that HIF-1α interacts with YAP and promotes nuclear translocation of YAP at a high cell density under hypoxic conditions, suggesting HIF-1α serves as a direct carrier that enables YAP nuclear translocation. This is the first study to identify HIF-1α as a crucial pathway for YAP nuclear translocation under hypoxic conditions. Once translocated into a nucleus, YAP protects cells from DNA damage and apoptosis under hypoxic conditions. Since it is unlikely for YAP to translocate into a nucleus without HIF-1α, any treatment that fosters the crosstalk between the two holds the potential to improve cell recovery from hypoxic insults.

9.
Sci Total Environ ; 904: 166698, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683864

RESUMO

Sheep are important livestock animals that have evolved under various ecological pressures. Xinjiang is a region with diverse and harsh environments that have shaped many local sheep breeds with unique characteristics and environmental adaptability. However, these breeds are losing ecological flexibility due to the promotion of intensive farming practices. Here we sequenced 14 local sheep breeds from Xinjiang and analyzed their genetic structure and gene flow with other sheep breeds from neighboring regions. The Tibetan Plateau was the geographic origin of Xinjiang native sheep evolution. We performed genome-environment association analysis and identified Bio9: Mean Temperature of Driest Quarter and Bio15: Precipitation Seasonality as the key environmental factors affecting Xinjiang local sheep and the key genes involved in their survival and adaptation. We classified Xinjiang native sheep breeds into six groups based on their differential genes by pairwise selective sweep analysis and Community Network Analysis. We analyzed transcriptome expression data of 832 sheep tissues and detected tissue-specific enrichment of six group-specific genes in different biological systems. Our results revealed the genetic basis of year-round estrus, drought tolerance, hypoxia resistance, and cold tolerance traits of Xinjiang sheep breeds. Moreover, we proposed conservation strategies for Xinjiang local sheep breeds and provided theoretical guidance for breeding new sheep breeds under global extreme environments.


Assuntos
Meio Ambiente , Carneiro Doméstico , Feminino , Ovinos/genética , Animais , Carneiro Doméstico/genética , Genômica , China , Polimorfismo de Nucleotídeo Único
10.
Foods ; 12(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628016

RESUMO

Peony seeds, an important oil resource, have been attracting much attention because of α-linolenic acid. Oil bodies (OBs), naturally pre-emulsified oils, have great potential applications in the food industry. This study investigated the effects of extraction pH and Quillaja saponin (QS) on the physicochemical properties of peony oil body (POB) emulsions. POBs were extracted from raw peony milk at pH 4.0, 5.0, 6.0, and 7.0 (named pH 4.0-, 5.0-, 6.0-, and 7.0-POBs). All POBs contained extrinsic proteins and oleosins. The extrinsic proteins of pH 4.0- and pH 5.0-POB were 23 kDa and 38 kDa glycoproteins, the unknown proteins were 48 kDa and 60 kDa, while the 48 kDa and 38 kDa proteins were completely removed under the extraction condition of pH 6.0 and 7.0. The percentage of extrinsic proteins gradually decreased from 78.4% at pH 4.0-POB to 33.88% at pH 7.0-POB, while oleosin contents increased. The particle size and zeta potential of the POB emulsions decreased, whereas the oxidative stability, storage stability, and pI increased with the increasing extraction pH. QS (0.05~0.3%) increased the negative charges of all the POB emulsions, and 0.1% QS significantly improved the dispersion, storage, and the oxidative stability of the POB emulsions. This study provides guidance for selecting the proper conditions for the aqueous extraction of POBs and improving the stability of OB emulsions.

11.
J Phys Chem Lett ; 14(35): 7883-7891, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37639374

RESUMO

Proton exchange membrane (PEM) fuel cells are a promising and environmentally friendly device to directly convert hydrogen energy into electric energy. However, water flooding and gas transport losses degrade its power density owing to structural issues (cracks, roughness, etc.) of the microporous layer (MPL). Here, we introduce a green material, supercritical fluid exfoliated graphene (s-Gr), to act as a network to effectively improve gas transport and water management. The assembled PEM fuel cell achieves a power density of 1.12 W cm-2. This improved performance is attributed to the reduction of cracks and the slip of water and gas on the s-Gr surface, in great contrast to the nonslip behavior on carbon black (CB). These findings open up an avenue to solve the water and gas transport problem in porous media by materials design with low friction and provide a new opportunity to boost high power density PEM fuel cells.

12.
Biomed Pharmacother ; 166: 115381, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639744

RESUMO

BACKGROUND: The lung microbiome plays a crucial role in human health and disease. Extensive studies have demonstrated that the disturbance of the lung microbiome influences immune response, cognition, and behavior. The goal of this study was to investigate the effect of general anesthetics on lung microbiome. METHODS: Eight-week-old male SD rats received a continuous intravenous infusion of propofol or inhalation of isoflurane for 4 h. 16S rRNA gene amplification from BALF samples was used to investigate the changes in the lung microbiome after interventions. We further performed neurobehavioral assessments to find the differential strains' association with behavior disorder after isoflurane anesthesia. RESULTS: The absolute and relative quantitation of 16S rRNA sequencing data showed that isoflurane altered the diversity and abundance of the lung microbiome in rats more than propofol. Elusimicrobia increased significantly in the isoflurane group. Both EPM and OFT results showed that rats exhibited depression-like behaviors after inhalation of isoflurane. In addition, significant differences were found in the COG/KO/MetaCyc/KEGG pathway enrichment analyses among the groups. CONCLUSION: Continuous inhalation of isoflurane changed the diversity and composition of the lung microbiota in rats, resulting in post-anesthesia depression.


Assuntos
Isoflurano , Microbiota , Propofol , Humanos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , RNA Ribossômico 16S , Isoflurano/farmacologia , Propofol/farmacologia , Anestesia Geral
13.
J Colloid Interface Sci ; 652(Pt A): 557-566, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37607418

RESUMO

Controllable construction and manipulation of artificial multi-compartmental structures are crucial in understanding and imitating smart molecular elements such as biological cells and on-demand delivery systems. Here, we report a liquid crystal droplet (LCD) based three-dimensional system for controllable and reversible ingestion and release of guest aqueous droplets (GADs). Induced by interfacial thermodynamic fluctuation and internal topological defect, microscale LCDs with perpendicular anchoring condition at the interface would spontaneously ingest external components from the surroundings and transform them as radially assembled tiny GADs inside LCDs. Landau-de Gennes free-energy model is applied to describe and explain the assembly dynamics and morphologies of these tiny GADs, which presents a good agreement with experimental observations. Furthermore, the release of these ingested GADs can be actively triggered by changing the anchoring conditions at the interface of LCDs. Since those ingestion and release processes are controllable and happen very gently at room temperature and neutral pH environment without extra energy input, these microscale LCDs are very prospective to provide a unique and viable route for constructing hierarchical 3D structures with tunable components and compartments.

14.
J Colloid Interface Sci ; 650(Pt B): 1725-1735, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506414

RESUMO

Developing improved anode materials is critical to the performance enhancement and the lifespan prolonging of sodium-ion batteries (SIBs). In this context, carbon-based nanostructures have emerged as a promising candidate. In this work, we have synthesized N, B, and P tri-doped carbon (NBPC) spheres using a one-step carbonization method. The as-prepared NBPC exhibits exceptional properties, including an expanded layer space, sufficient structural defects, and enhanced electrical conductivity. These characteristics synergistically contribute to the remarkable rate capability and ultra-long lifespan when NBPC is employed as an anode material for SIBs. The as-prepared NBPC demonstrates a reversible capacity of 290.6 mAh/g at 0.05 A/g, with a capacity retention of 98.4% after 800 cycles. Furthermore, NBPC exhibits an impressively ultra-long cycle life of 2400 cycles at 1.0 A/g with a reversible capacity of 140.2 mAh/g. First principle calculations confirm that the introduction of N, B, and P heteroatoms in carbon enhances the binding strength of sodium ions within NBPC. This work presents a novel approach for fabricating advanced anode materials, enabling the development of long-life SIBs for practical applications.

15.
Lab Chip ; 23(12): 2798-2807, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37199123

RESUMO

Chirality is universal in nature and in biological systems, and the chirality of cholesteric liquid crystals (Ch-LC) is both controllable and quantifiable. Herein, a strategy for precise chirality recognition in a nematic LC host within soft microscale confined droplets is reported. This approach facilitates applications in distance and curvature sensing as well as on-site characterization of the overall uniformity and bending movements of a flexible device. Due to interfacial parallel anchoring, monodisperse Ch-LC spherical microdroplets show radial spherical structure (RSS) rings with a central radical point-defect hedgehog core. Strain-induced droplet deformation destabilizes the RSS configuration and induces the recognition of chirality, creating "core-shell" structures with distinguishable sizes and colors. In practice, an optical sensor is achieved due to the rich palette of optically active structures that can be utilized for gap distance measuring and the monitoring of curvature bending. The properties reported here and the constructed device have great potential for applications in soft robotics, wearable sensors, and advanced optoelectronic devices.

16.
J Colloid Interface Sci ; 641: 396-403, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36948096

RESUMO

Solid-state Li batteries employing Li-metal anodes and solid Li/Li1.3Al0.3Ti1.7(PO4)3 (LATP) electrolytes have emerged as promising next-generation energy storage devices due to their high energy density and safety. However, their performance is seriously limited by the irreversible reactivity of LATP with the Li-metal anode and the poor solid-solid interfacial contact between them, which result in relatively low ionic conductivity at the interface. The present work addresses these issues by presenting a method for modifying the Li/LATP interface in situ by applying 2-(trimethylsilyl) phenyl trifluoromethanesulfonate (2-(TMS)PTM) as a new type of electrolyte additive between the Li anode and the LATP electrolyte when assembling the battery, and then forming a uniform and thin interfacial layer via redox reactions occurring during the application of multiple charge-discharge cycles to the resulting battery. As a result of the significantly improved chemical compatibility between the Li anode and the LATP electrolyte, an as-assembled battery delivers a high reversible capacity of 165.7 mAh g-1 and an outstanding capacity retention of 86.2% after 300 charge-discharge cycles conducted at a rate of 0.2C and a temperature of 30 °C. Accordingly, this work provides a new strategy for developing advanced solid-state Li metal batteries by tailoring the interface between the Li anode and the solid electrolyte.

17.
Pain Ther ; 12(2): 491-503, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36652140

RESUMO

INTRODUCTION: Postoperative impaired sleep quality and pain are associated with adverse outcomes. Stellate ganglion block (SGB) has shown promising results in enhancing sleep quality and alleviating neuropathic pain. This study aimed to investigate the effects of ultrasound-guided SGB on postoperative sleep quality and pain in patients undergoing breast cancer surgery. METHODS: This study is a parallel-group randomized controlled clinical trial with two groups: SGB and control. Fifty female patients undergoing breast cancer surgery were randomized in a 1:1 ratio to receive preoperative ultrasound-guided single-injection SGB (SGB group) or just an ultrasound scan (control group). All participants were blinded to the group assignment. The primary outcome was postoperative sleep quality, assessed by the St. Mary's Hospital Sleep Questionnaire and actigraphy 2 days postoperatively. The secondary outcome was postoperative pain, measured by the visual analog scale. RESULTS: A total of 48 patients completed the study, with 23 patients in the control group and 25 in the SGB group. The postoperative St. Mary's Hospital Sleep Questionnaire scores were significantly higher in the SGB group than in the control group on 1 day postoperative (30.88 ± 2.44 versus 27.35 ± 4.12 points, P = 0.001). The SGB also increased the total sleep time and sleep efficiency (main actigraphy indicators) during the first two postoperative nights. Compared with the control group, preoperative SGB reduced postoperative pain and the incidence of breast cancer-related lymphedema (20% versus 52.2%, P = 0.02, odds ratio 0.229, 95% confidence interval 0.064-0.821). There were no adverse events related to SGB. CONCLUSION: Preoperative ultrasound-guided SGB improves postoperative sleep quality and analgesia in patients undergoing breast cancer surgery. SGB may be a safe and practical treatment to enhance the postoperative quality of life in patients with breast cancer. TRIAL REGISTRATION: The study was registered in the Chinese Clinical Trial Registry (ChiCTR2100046620, principal investigator: Kai Zeng, date of registration: 23 May 2021).

18.
Poult Sci ; 102(1): 102297, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36446267

RESUMO

Hepatic steatosis is a highly prevalent liver disease, yet research on it is hampered by the lack of tractable cellular models in poultry. To examine the possibility of using organoids to model steatosis and detect it efficiently in leghorn male hepatocellular (LMH) cells, we first established steatosis using different concentrations of oleic acid (OA) (0.05-0.75 mmol/L) for 12 or 24 h. The subsequent detections found that the treatment of LMH cells with OA resulted in a dramatic increase in intracellular triglyceride (TG) concentrations, which was positively associated with the concentration of the inducing OA (R2 > 0.9). Then, the modeled steatosis was detected by flow cytometry after NileRed staining and it was found that the intensity of NileRed-A was positively correlated with the TG concentration (R2 > 0.93), which demonstrates that the flow cytometry is suitable for the detection of steatosis in LMH cells. According to the detection results of the different steatosis models, we confirmed that the optimal induction condition for the establishment of the steatosis model in LMH cells is OA (0.375 mmol/L) incubation for 12 h. Finally, the transcription and protein content of fat metabolism-related genes in steatosis model cells were detected. It was found that OA-induced steatosis could significantly decrease the expression of nuclear receptor PPAR-γ and the synthesis of fatty acids (SREBP-1C, ACC1, FASN), increasing the oxidative decomposition of triglycerides (CPT1A) and the assembly of low-density lipoproteins (MTTP, ApoB). Sterol metabolism in model cells was also significantly enhanced (HMGR, ABCA1, L-BABP). This study established, detected, and analyzed an OA-induced steatosis model in LMH cells, which provides a stable model and detection method for the study of poultry steatosis-related diseases.


Assuntos
Fígado Gorduroso , Ácido Oleico , Masculino , Animais , Ácido Oleico/metabolismo , Metabolismo dos Lipídeos , Galinhas/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo
19.
J Colloid Interface Sci ; 632(Pt A): 1-10, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403372

RESUMO

Lithium metal is deemed a promising anode material for the next-generation batteries with high specific energy. Unfortunately, the growth of Li dendrites and infinite volume change during cycling, caused by the "hostless" feature of metallic Li, have posed a great challenge to the commercialization of Li metal anode. The introduction of appropriate host materials for Li metal is highly desirable. In this work, a N, P dual-doped 3D carbon derived from low-cost quantitative filter paper (NPCQP) is designed and fabricated for direct using as a host for Li metal anode. The resulting NPCQP host achieves a high deposition/stripping Coulombic efficiency of above 97.5 % with a low nucleation overpotential. Moreover, the NPCQP@Li symmetric cells enable an excellent long-term cycling performance (1000 h) with an ultralow voltage hysteresis (12 mV) and stable interface behavior. When paired with the commercial LiFePO4 cathode, the full cell with NPCQP@Li anode displays impressive long-term cyclic stability and rate capability, outperforming the counter cell with bare Li anode. This contribution sheds light on the rational design of viable host for practical lithium metal anodes.

20.
Vet Sci ; 9(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36548814

RESUMO

Rothia nasimurium is a facultative anaerobic Gram-positive coccus belonging to the Rothia genus of the Micrococcaceae family. While Rothia nasimurium is considered an opportunistic pathogen, to date few studies have investigated its pathogenicity and drug resistance. In January 2022, chickens at a poultry farm in China's Xinjiang Uygur Autonomous Region became ill and died. Treatment with commonly used Chinese medicines and antibiotics was ineffective, causing economic losses to the poultry farm. In order to determine the cause of the disease in these poultry farm chickens, the isolation and identification of the pathogens in the livers and other internal organs of the sick and dead chickens were performed. Further, animal pathogenicity tests, antibiotic susceptibility tests, and the detection of antibiotic resistance genes were carried out to analyze the pathogenicity and drug resistance of the identified pathogens. A Gram-positive coccus was isolated from the livers of the diseased chickens. The isolate was resistant to 17 antibiotics, including ciprofloxacin, chloramphenicol, and florfenicol, and was only sensitive to penicillin, amikacin, and tigecycline, to varying degrees. The results of the drug resistance gene testing indicated that the isolated bacterium carried 13 kinds of resistance genes. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, morphological observations, biochemical tests, and 16S rRNA gene sequence analysis were performed on the isolated bacterium, and it was determined that the isolated bacterial strain was Rothia nasimurium. The animal pathogenicity tests showed that the isolate caused feather loss and death in chicks; the clinical symptoms and necropsy lesions of the test chicks were consistent with those observed in the farmed chickens. A review of the literature revealed that, to date, there are no reports of infection with Rothia nasimurium in chickens. Thus, in this study, Rothia nasimurium was isolated from chickens for the first time and an investigation of the biological characteristics of the bacterium was carried out in order to provide a reference for the clinical treatment, prevention, and control of Rothia nasimurium infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA