Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Pharm ; 652: 123869, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38296171

RESUMO

Food and formulation characteristics are crucial factors affecting the gastrointestinal release and absorption kinetics of oral solid preparations. In the present study, the dynamic continuous release and bioaccessibility of metformin hydrochloride immediate-release (IR) and sustained-release (SR) tablets were investigated in the dynamic human stomach-intestine (DHSI-IV) system simulating fasted and fed states in healthy adults. Both tablet formulations (particularly IR tablet) exhibited a postponed release in the fed state compared to the fasted state. Correspondingly, the bioaccessible fraction of metformin from IR tablets in the presence of high-fat meal was significantly reduced to 76.2 % of the fasted state. However, the in vitro bioaccessibility was less impaired by food for SR tablets with a fed/fasted ratio of 95.5 %. A convolution-based approach was used to convert in vitro bioaccessibility results to plasma concentration data. The predicted plasma concentration curve showed good agreement with human data in terms of pharmacokinetic (PK) parameters. In the fasted state, the predicted Cmax, Tmax and AUC0-24h of IR tablets were 943.9 ± 25.7 ng/mL, 2.0 ± 0.4 h and 7090.7 ± 112.0 ng.h/mL, respectively, mirroring values observed in healthy subjects. Overall, the DHSI-IV system has demonstrated potential to assess and predict the impact of meal intake on the in vivo release and absorption behaviors of oral solid preparations.


Assuntos
Jejum , Metformina , Adulto , Humanos , Administração Oral , Trato Gastrointestinal , Comprimidos , Preparações de Ação Retardada/farmacocinética , Estudos Cross-Over , Disponibilidade Biológica , Área Sob a Curva
2.
BMC Public Health ; 24(1): 295, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273270

RESUMO

BACKGROUND: The possibility of adverse effects of medical treatment (AEMT) is increasing worldwide, but little is known about AEMT in China. This study analyzed the health burden of AEMT in China in recent years through the Global Burden of Disease Study (GBD) 2019 and compared it with the worldwide average level and those in different sociodemographic index (SDI) regions. METHODS: We calculated the age-standardized rate (ASR) of deaths, disability-adjusted life years (DALYs), years of life lost (YLLs), years lived with disability (YLDs), incidence and prevalence attributed to AEMT in China, worldwide and countries with different sociodemographic indices during 1990-2019 using the latest data and methods from the GBD 2019. RESULTS: From 1990 to 2019, the global age-standardized death rate (ASDR), DALYs, and YLLs for AEMT showed a significant downward trend and were negatively associated with the SDI. By 2040, the ASDR is expected to reach approximately 1.58 (95% UI: 1.33-1.80). From 1990 to 2019, there was no significant change in the global incidence of AEMT. The occurrence of AEMT was related to sex, and the incidence of AEMT was greater among females. In addition, the incidence of AEMT-related injuries and burdens, such as ASR of DALYs, ASR of YLLs and ASR of YLDs, was greater among women than among men. Very old and very young people were more likely to be exposed to AEMT. CONCLUSIONS: From 1990 to 2019, progress was made worldwide in reducing the harm caused by AEMT. However, the incidence and prevalence of AEMT did not change significantly overall during this period. Therefore, the health sector should pay more attention to AEMT and take effective measures to reduce AEMT.


Assuntos
Pessoas com Deficiência , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Morte Perinatal , Masculino , Humanos , Feminino , Adolescente , Carga Global da Doença , Incidência , Prevalência , Saúde Global , Anos de Vida Ajustados por Qualidade de Vida
3.
Org Lett ; 25(49): 8834-8838, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38054743

RESUMO

An efficient visible-light-driven iron-catalyzed decarboxylative C-N coupling reaction of alkyl carboxylic acids with NaNO2 under mild conditions was developed. The reaction proceeds under photosensitizer-free conditions and features good to excellent yields, broad functional group tolerance, and an easy operation procedure. Preliminary mechanistic investigations showed that visible-light-driven iron catalysis not only achieved oxidative decarboxylation of alkyl carboxylic acids to alkyl radicals but also promoted the reduction of NO2- to NO, thus leading to the C-N radical coupling reaction.

4.
Chem Commun (Camb) ; 59(95): 14177-14180, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961762

RESUMO

An efficient visible-light-induced iron-catalyzed reduction of nitroarenes to anilines by using N-ethylmorpholine (NEM) as a reductant under mild conditions has been developed. The reaction proceeds with photosensitizer-free conditions and features good to excellent yields and broad functional group tolerance. Preliminary mechanistic investigations showed that this reaction was conducted via ligand-to-metal (NEM to Fe3+) charge transfer and nitro triplet biradical-induced hydrogen atom transfer processes.

5.
Org Lett ; 25(40): 7344-7348, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37791683

RESUMO

A visible-light-driven, photocatalyst-free, air-promoted, α-substituted reaction of amines with varying nucleophiles is described. The amine substrate aggregates formed in situ through physical π-π stacking by H2O regulation in organic solvent can absorb visible light and then generate iminium ion intermediates, which undergo nucleophilic substitution reactions with varying nucleophiles to afford α-substituted amines. This reaction features catalyst-free, good functional group tolerance, simple operation procedure, and green reaction conditions.

6.
Molecules ; 28(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37630188

RESUMO

With the advancement of computer technology, machine learning-based artificial intelligence technology has been increasingly integrated and applied in the fields of medicine, biology, and pharmacy, thereby facilitating their development. Transporters have important roles in influencing drug resistance, drug-drug interactions, and tissue-specific drug targeting. The investigation of drug transporter substrates and inhibitors is a crucial aspect of pharmaceutical development. However, long duration and high expenses pose significant challenges in the investigation of drug transporters. In this review, we discuss the present situation and challenges encountered in applying machine learning techniques to investigate drug transporters. The transporters involved include ABC transporters (P-gp, BCRP, MRPs, and BSEP) and SLC transporters (OAT, OATP, OCT, MATE1,2-K, and NET). The aim is to offer a point of reference for and assistance with the progression of drug transporter research, as well as the advancement of more efficient computer technology. Machine learning methods are valuable and attractive for helping with the study of drug transporter substrates and inhibitors, but continuous efforts are still needed to develop more accurate and reliable predictive models and to apply them in the screening process of drug development to improve efficiency and success rates.


Assuntos
Inteligência Artificial , Proteínas de Neoplasias , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas de Membrana Transportadoras , Aprendizado de Máquina
7.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446913

RESUMO

The kidney is critical in the human body's excretion of drugs and their metabolites. Renal transporters participate in actively secreting substances from the proximal tubular cells and reabsorbing them in the distal renal tubules. They can affect the clearance rates (CLr) of drugs and their metabolites, eventually influence the clinical efficiency and side effects of drugs, and may produce drug-drug interactions (DDIs) of clinical significance. Renal transporters and renal transporter-mediated DDIs have also been studied by many researchers. In this article, the main types of in vitro research models used for the study of renal transporter-mediated DDIs are membrane-based assays, cell-based assays, and the renal slice uptake model. In vivo research models include animal experiments, gene knockout animal models, positron emission tomography (PET) technology, and studies on human beings. In addition, in vitro-in vivo extrapolation (IVIVE), ex vivo kidney perfusion (EVKP) models, and, more recently, biomarker methods and in silico models are included. This article reviews the traditional research methods of renal transporter-mediated DDIs, updates the recent progress in the development of the methods, and then classifies and summarizes the advantages and disadvantages of each method. Through the sorting work conducted in this paper, it will be convenient for researchers at different learning stages to choose the best method for their own research based on their own subject's situation when they are going to study DDIs mediated by renal transporters.


Assuntos
Rim , Proteínas de Membrana Transportadoras , Animais , Humanos , Rim/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Interações Medicamentosas , Transporte Biológico , Taxa de Depuração Metabólica , Preparações Farmacêuticas/metabolismo
8.
Biomed Pharmacother ; 165: 115121, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418979

RESUMO

Redox homeostasis refers to the dynamic equilibrium between oxidant and reducing agent in the body which plays a crucial role in maintaining normal physiological activities of the body. The imbalance of redox homeostasis can lead to the development of various human diseases. Lysosomes regulate the degradation of cellular proteins and play an important role in influencing cell function and fate, and lysosomal dysfunction is closely associated with the development of various diseases. In addition, several studies have shown that redox homeostasis plays a direct or indirect role in regulating lysosomes. Therefore, this paper systematically reviews the role and mechanisms of redox homeostasis in the regulation of lysosomal function. Therapeutic strategies based on the regulation of redox exerted to disrupt or restore lysosomal function are further discussed. Uncovering the role of redox in the regulation of lysosomes helps to point new directions for the treatment of many human diseases.


Assuntos
Autofagia , Lisossomos , Humanos , Homeostase , Oxirredução , Lisossomos/metabolismo
9.
Biomed Pharmacother ; 161: 114444, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857912

RESUMO

Despite significant treatment advances, breast cancer remains the leading cause of cancer death in women. From the current treatment situation, in addition to developing chemoresistant tumours, distant organ metastasis, and recurrences, patients with breast cancer often have a poor prognosis. Aptamers as "chemical antibodies" may be a way to resolve this dilemma. Aptamers are single-stranded, non-coding oligonucleotides (DNA or RNA), resulting their many advantages, including stability for long-term storage, simplicity of synthesis and function, and low immunogenicity, a high degree of specificity and antidote. Aptamers have gained popularity as a method for diagnosing and treating specific tumors in recent years. This article introduces the application of ten different aptamer delivery systems in the treatment and diagnosis of breast cancer, and systematically reviews their latest research progress in breast cancer treatment and diagnosis. It provides a new direction for the clinical treatment of breast cancer.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Aptâmeros de Nucleotídeos/uso terapêutico , Sistemas de Liberação de Medicamentos , RNA , Terapia de Alvo Molecular
10.
RSC Adv ; 13(12): 7798-7817, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36909750

RESUMO

Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.

11.
Environ Toxicol ; 38(5): 1153-1161, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811345

RESUMO

Clinical application of doxorubicin is limited because of its potential side effects. The present study examined whether naringin had protective actions on doxorubicin-induced liver injury. Male BALB/c mice and alpha mouse liver 12 (AML-12) cells were used in this paper. The results showed that AML-12 cells treated with naringin significantly reduced cell injury, reactive oxygen species release and apoptosis level; Moreover, naringin notably alleviated liver injury by decreasing aspartate transaminase, alanine transaminase and malondialdehyde, and increasing superoxide dismutase, glutathione and catalase levels. Mechanism researches indicated that naringin increased the expression levels of sirtuin 1 (SIRT1), and inhibited the downstream inflammatory, apoptotic and oxidative stress signaling pathways. Further validation was obtained by knocking down SIRT1 in vitro, which proved the effects of naringin on doxorubicin-induced liver injury. Therefore, naringin is a valuable lead compound for preventing doxorubicin-induced liver damage by reducing oxidative stress, inflammation, and apoptosis via up-regulation of SIRT1.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Sirtuína 1 , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/prevenção & controle , Doxorrubicina/toxicidade , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucemia Mieloide Aguda/metabolismo , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 1/efeitos dos fármacos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Regulação para Cima , Flavanonas/farmacologia , Flavanonas/uso terapêutico
12.
Biomed Pharmacother ; 157: 113992, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36395610

RESUMO

Abnormal intracellular metabolism not only provides nutrition for tumor occurrence and development, but also sensitizes the function of various immune cells in the immune microenvironment to promote tumor immune escape. This review discusses the emerging role of immune cells in the progress of pancreatic cancer, acrossing metabolic reprogramming and key metabolic pathways present in different immune cell types. At present, the hotspots of metabolic reprogramming of immune cells in pancreatic cancer progression mainly focuses on glucose metabolism, lipid metabolism, tricarboxylic acid cycle and amino acid metabolism, which affect the function of anti-tumor immune cells and immunosuppressive cells in the microenvironment, such as macrophages, dendritic cells, T cells, myeloid-derived suppressor cells, neutrophils and B cells by a series of key metabolic signaling pathways, such as PI3K/AKT, mTOR, AMPK, HIF-1α, c-Myc and p53. Drugs that target the tumor metabolism pathways for clinical treatment of pancreatic cancer are also systematically elaborated, which may constitute food for others' projects involved in clinical anti-cancer research.


Assuntos
Neoplasias , Neoplasias Pancreáticas , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Linfócitos T , Metabolismo Energético , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
13.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235108

RESUMO

Currently, both acute kidney injury (AKI) and chronic kidney disease (CKD) are considered to be the leading public health problems with gradually increasing incidence rates around the world. Rhein is a monomeric component of anthraquinone isolated from rhubarb, a traditional Chinese medicine. It has anti-inflammation, anti-oxidation, anti-apoptosis, anti-bacterial and other pharmacological activities, as well as a renal protective effects. Rhein exerts its nephroprotective effects mainly through decreasing hypoglycemic and hypolipidemic, playing anti-inflammatory, antioxidant and anti-fibrotic effects and regulating drug-transporters. However, the latest studies show that rhein also has potential kidney toxicity in case of large dosages and long use times. The present review highlights rhein's molecular targets and its different effects on the kidney based on the available literature and clarifies that rhein regulates the function of the kidney in a positive and negative way. It will be helpful to conduct further studies on how to make full use of rhein in the kidney and to avoid kidney damage so as to make it an effective kidney protection drug.


Assuntos
Antioxidantes , Insuficiência Renal Crônica , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/farmacologia , Rim
14.
Front Oncol ; 12: 942064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059650

RESUMO

Breast cancer is the leading cause of cancer death in women. At present, chemotherapy is the main method to treat breast cancer in addition to surgery and radiotherapy, but the process of chemotherapy is often accompanied by the development of drug resistance, which leads to a reduction in drug efficacy. Furthermore, mounting evidence indicates that drug resistance is caused by dysregulated cellular metabolism, and metabolic reprogramming, including enhanced glucose metabolism, fatty acid synthesis and glutamine metabolic rates, is one of the hallmarks of cancer. Changes in metabolism have been considered one of the most important causes of resistance to treatment, and knowledge of the mechanisms involved will help in identifying potential treatment deficiencies. To improve women's survival outcomes, it is vital to elucidate the relationship between metabolic reprogramming and drug resistance in breast cancer. This review analyzes and investigates the reprogramming of metabolism and resistance to breast cancer therapy, and the results offer promise for novel targeted and cell-based therapies.

15.
Front Pharmacol ; 13: 891008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721168

RESUMO

Background: Sintilimab + a bevacizumab biosimilar (IBI305) (SB) and atezolizumab + bevacizumab (AB) have been approved for the treatment of unresectable hepatocellular carcinoma (HCC). At present, oncologists and their patients remain indecisive on their preferred treatment regime. Therefore, assessing their efficacy via a network meta-analysis and determining their comparative cost-effectiveness is necessary. Objective: To evaluate the cost-effectiveness of SB and AB compared with sorafenib alone for the treatment of unresectable HCC. Materials and Methods: The data used in our analysis were obtained from patients in ORIENT-32 and IMbrave150 phase III randomized clinical trials. A Bayesian network meta-analysis and cost-effectiveness analysis that included 1,072 patients were performed in this study. A partitioned survival model was applied to the patients with unresectable HCC. The model was designed with a 15-year time horizon, 1-month cycle, and 5% discount rate for costs and outcomes. In China, an incremental cost-effectiveness ratio (ICER) value of less than $33,500 (three times the GDP per capita in 2020) per quality-adjusted life-year (QALY) is considered cost-effective. The influence of parameter uncertainty on the results was verified by one-way deterministic sensitivity analysis and probability sensitivity analysis. Furthermore, scenario analyses of the patient assistance program (PAP) were conducted to explore the cost-effectiveness of SB and AB. Results: For the model of 1,072 patients, treatment with SB produced an additional 0.617 QALYs compared with sorafenib, resulting in an ICER of $39,766.86/QALY. Similarly, treatment with AB produced an additional 0.596 QALYs compared with sorafenib, resulting in an ICER of $103,037.66/QALY. The probability sensitivity analysis showed that when the willingness-to-pay (WTP) threshold was $33,500/QALY, the cost-effectiveness of SB and AB was 15.4 and 0.4%, respectively. However, in the scenario analyses, the probability of SB and AB regimens being cost-effective was 65.4 and 15.8%, respectively, at a WTP of $33,500/QALY. Conclusion: The findings from our study showed that sintilimab + a bevacizumab biosimilar is a cost-effective regimen compared with sorafenib as the first-line therapy for unresectable HCC in China at a $33,500 WTP threshold if sintilimab PAP is considered. However, the atezolizumab + bevacizumab regimen is not cost-effective whether atezolizumab PAP is considered or not.

16.
Front Pharmacol ; 13: 859755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496302

RESUMO

Doxorubicin (DOX) leads to myocardial cell damage and irreversible heart failure, which limits the clinical application of DOX. Naringin has biological functions of inhibiting inflammation, oxidative stress and apoptosis. Our aim was to investigate whether Naringin could prevent DOX-related cardiotoxicity in mice. Naringin was administered by gavage and mice were intraperitoneally injected with doxorubicin (1 mg/kg/day) for 15 days. H&E, Masson, TUNEL and others experiments were examined. NRVMs and H9C2 cells were treated with Naringin and DOX in vitro. Using IF, ELISA and Western Blot to detect the effect of Naringin and ECHS1 on cells. The results showed that Naringin could prevent DOX related cardiac injury, inhibit cardiac oxidative stress, inflammation and apoptosis in vivo and in vitro. Inhibition of ECHS1 could interfere the effect of Naringin on DOX-induced myocardial injury. Naringin may provide a new cardiac protective tool for preventing the cardiotoxicity of anthracycline drugs.

17.
Environ Toxicol ; 37(6): 1332-1342, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35179299

RESUMO

Severe acetaminophen (APAP)-induced hepatic damage is the second most common cause for hepatic transplantation. Clinically, hepatic damage caused by APAP is treated using N-acetyl-L-cysteine, which can induce numerous side effects. Naringin, a bioflavonoid abundant in grapefruit and other citrus fruits, displays marked antiinflammatory and antioxidant activities. Herein, we aimed to investigate the potential mechanism underlying naringin-mediated protection against APAP-induced acute hepatotoxicity. We observed that naringin afforded protection against APAP-induced acute liver failure in mice. Importantly, pretreatment with naringin before APAP administration further increased antioxidant enzyme expression, inhibited the production of proinflammatory cytokines, and activated apoptotic pathways. Furthermore, we observed that the protective effect was associated with the upregulation of cation transport regulator-like protein 2 (CHAC2) and nuclear factor erythroid derived-2-related factor 2 (Nrf2). Notably, CHAC2 knockdown inhibited Nrf2 activation and naringin-mediated antioxidant, antiinflammatory, and antiapoptotic effects in APAP-induced liver injury. Likewise, si-Nrf2 blocked the protective effect of naringin against APAP-induced liver injury. Collectively, our results indicate that naringin may be a potent CHAC2 activator, alleviating APAP-induced hepatitis via CHAC2-mediated activation of the Nrf2 pathway. These data provide new insights into mechanisms through which CHAC2 regulates APAP-induced liver injury by targeting Nrf2, which should be considered a novel therapeutic target.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Flavanonas , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Regulação para Cima
18.
Cancer Cell Int ; 21(1): 513, 2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563186

RESUMO

As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health problem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as a therapeutic target.

19.
Exp Ther Med ; 21(1): 66, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33365066

RESUMO

Interstitial fibrosis is a typical feature of all progressive renal diseases. The process of fibrosis is frequently coupled with the presence of pro-fibrotic factors and inflammation. Naringin is a dihydroflavone compound that has been previously reported to exhibit anti-fibrotic effects in the liver, where it prevents oxidative damage. In the present study, a rat model of renal interstitial fibrosis and fibrosis cell model were established to evaluate the effects of naringin on inflammatory proteins and fibrosis markers in kidney of rats and NRK-52E cells, and to elucidate the role of the TGF-ß/Smad signaling pathway in this mechanism. Compared with those in fibrotic NRK-52E cells that were stimulated by transforming growth factor-ß (TGF-ß), gene expression levels of α-smooth muscle actin (α-SMA), collagen 1 (COL1A1), collagen 3 (COL3A1), interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α) were all found to be significantly decreased in fibrotic NRK-52E cells following treatment with naringin (50, 100 and 200 ng/ml). Results from the histopathological studies showed that naringin treatment preserved the renal tissue structure and reduced the degree of fibrosis in the kidney tissues of rats that underwent unilateral ureteral obstruction (UUO). In addition, naringin administration reduced the expression of α-SMA, COL1A1, COL3A1, IL-1ß, IL-6 and TNF-α in the kidneys of rats following UUO. The current study, using western blot analysis, indicated that naringin also downregulated the activation of Smad2/3 and the expression of Smad4, high-mobility group protein B1, activator protein-1, NF-κB and cyclooxygenase-2 whilst upregulating the expression of Smad7 in fibrotic NRK-52E cells and rats in the UUO group. In conclusion, naringin could antagonize renal interstitial fibrosis by regulating the TGF-ß/Smad pathway and the expression of inflammatory factors.

20.
Front Plant Sci ; 11: 1304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013953

RESUMO

Silicon (Si) plays an important role in improving soil nutrient availability and plant carbon (C) accumulation and may therefore impact the biogeochemical cycles of C, nitrogen (N), and phosphorus (P) in terrestrial ecosystems profoundly. However, research on this process in grassland ecosystems is scarce, despite the fact that these ecosystems are one of the most significant accumulators of biogenic Si (BSi). In this study, we collected the aboveground parts of four widespread grasses and soil profile samples in northern China and assessed the correlations between Si concentrations and stoichiometry and accumulation of C, N, and P in grasses at the landscape scale. Our results showed that Si concentrations in plants were significantly negatively correlated (p < 0.01) with associated C concentrations. There was no significant correlation between Si and N concentrations. It is worth noting that since the Si concentration increased, the P concentration increased from less than 0.10% to more than 0.20% and therefore C:P and N:P ratios decreased concomitantly. Besides, the soil noncrystalline Si played more important role in C, N, and P accumulation than other environmental factors (e.g., MAT, MAP, and altitude). These findings indicate that Si may facilitate grasses in adjusting the utilization of nutrients (C, N, and P) and may particularly alleviate P deficiency in grasslands. We conclude that Si positively alters the concentrations and accumulation of C, N, and P likely resulting in the variation of ecological stoichiometry in both vegetation and litter decomposition in soils. This study further suggests that the physiological function of Si is an important but overlooked factor in influencing biogeochemical cycles of C and P in grassland ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA