RESUMO
OBJECTIVE: Oligosaccharides have been shown to enhance the production of short chain fatty acids (SCFAs) by gut probiotics and regulate gut microbiota, to improve intestinal health. Recent research indicates that oligosaccharides may also positively impact skin microbiota by selectively promoting the growth of skin commensal bacteria and inhibiting pathogenic bacteria. However, the specific metabolic and regulatory mechanisms of skin commensal bacteria in response to oligosaccharides remain unclear. This study aims to explore the influence of four oligosaccharides on the growth and metabolism of Staphylococcus epidermidis and further identify skin prebiotics that can enhance its probiotic effects on the skin. METHODS: Fructooligosaccharides (FOS), isomaltooligosaccharide (IMO), galactooligosaccharides (GOS) and inulin were compared in terms of their impact on cell proliferation, SCFAs production of S. epidermidis CCSM0287 and the biofilm inhibition effect of their fermentation supernatants on Staphylococcus aureus CCSM0424. Furthermore, the effect of FOS on S. epidermidis CCSM0287 was analysed by the transcriptome analysis. RESULTS: All four oligosaccharides effectively promoted the growth of S. epidermidis CCSM0287 cells, increased the production of SCFAs, with FOS demonstrating the most significant effect. Analysis of the SCFAs indicated that S. epidermidis CCSM0287 predominantly employs oligosaccharides to produce acetic acid and isovaleric acid, differing from the SCFAs produced by gut microbiota. Among the four oligosaccharides, the addition of 2% FOS fermentation supernatant significantly inhibited S. aureus CCSM0424 biofilm formation. Furthermore, RNA sequencing revealed 162 differentially expressed genes (84 upregulated and 78 downregulated) of S. epidermidis CCSM0287 upon FOS treatment compared with glucose treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis highlighted differences in the amino acid synthesis pathway, particularly in terms of arginine biosynthesis. CONCLUSION: FOS promotes cell proliferation, increases the SCFA production of S. epidermidis CCSM0287 and enhance the inhibition of S. aureus biofilm formation, suggesting that FOS serves as a potential prebiotic for strain S. epidermidis CCSM0287.
OBJECTIF: Il a été démontré que les oligosaccharides améliorent la production d'acides gras à chaîne courte (AGCC) par les probiotiques intestinaux et régulent le microbiote intestinal, pour améliorer la santé intestinale. Des recherches récentes indiquent que les oligosaccharides peuvent également avoir un impact positif sur le microbiote cutané en favorisant sélectivement la croissance des bactéries commensales de la peau et en inhibant les bactéries pathogènes. Cependant, les mécanismes métaboliques et régulateurs spécifiques des bactéries commensales de la peau en réponse aux oligosaccharides restent incertains. Cette étude vise à étudier l'influence de quatre oligosaccharides sur la croissance et le métabolisme de Staphylococcus epidermidis, et à identifier de manière plus approfondie les prébiotiques cutanés qui peuvent améliorer ses effets probiotiques sur la peau. MÉTHODES: Les fructooligosaccharides (FOS), les isomaltooligosaccharides (IMO), les galactooligosaccharides (GOS) et l'inuline ont été comparés en termes d'impact sur la prolifération cellulaire, de production d'AGCC du S. epidermidis CCSM0287 et d'effet d'inhibition du biofilm de leurs surnageants de fermentation sur le staphylococoque CCSM0424. En outre, l'effet des FOS sur S. epidermidis CCSM0287 a été analysé par analyse du transcriptome. RÉSULTATS: Les quatre oligosaccharides ont efficacement favorisé la croissance des cellules du S. epidermidis CCSM0287, augmenté la production d'AGCC, le FOS démontrant l'effet le plus significatif. L'analyse des AGCC a indiqué que S. epidermidis CCSM0287 emploie principalement des oligosaccharides pour produire de l'acide acétique et de l'acide isovalérique, ce qui diffère des AAGC produites par le microbiote intestinal. Parmi les quatre oligosaccharides, l'ajout d'un surnageant de fermentation de FOS à 2% a inhibé significativement la formation du biofilm de S. aureus CCSM0424. En outre, le séquençage de l'ARN a révélé 162 gènes exprimés de manière différentielle (84 régulés à la hausse et 78 régulés à la baisse) de S. epidermidis CCSM0287 lors du traitement par FOS par rapport au traitement par glucose. L'analyse d'enrichissement de Kyoto Encyclopedia of Genes and Genomes (KEGG) a mis en évidence des différences dans la voie de synthèse des acides aminés, en particulier en termes de biosynthèse de l'arginine. CONCLUSION: Le FOS favorise la prolifération cellulaire, augmente la production des AGCC du S. epidermidis CCSM0287 et améliore l'inhibition de la formation du biofilm de S. aureus, ce qui indique que le FOS sert de prébiotique potentiel pour la souche S. epidermidis CCSM0287.
RESUMO
Excessive UVB exposure increased the production of reactive oxygen species (ROS), leading to oxidative damage and epidermal inflammation. To enhance UVB protection effect, a strong phenolic antioxidant, ferulic acid (FA) was designed onto HA via a free radical mediated method. Our previous work has confirmed its structural characterization and in vitro antioxidant. The aim of this study was to evaluate its protective effects against UVB-induced damage in human HaCaT cells. We observed a significant reduction in cell viability to 57.43 % following UVB exposure at a dose of 80 mJ/cm2. However, pretreatment with FA-HA (250 to 2000 µg·mL-1) significantly attenuated cytotoxicity in a dose-dependent manner. Furthermore, FA-HA was found to suppress the intracellular generation of ROS and up-regulated the expression of the antioxidant enzyme superoxide dismutase (SOD). The elevated levels of pro-inflammatory cytokines, including interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) as well as the mRNA expression of matrix metalloproteinase-1/9 (MMP-1/9) induced by UVB irradiation, were also effectively reduced by FA-HA. Additionally, FA-HA treatment decreases the phosphorylation of mitogen-activated protein kinase (MAPK) and activator protein-1 (AP-1), ultimately preventing apoptosis. These findings suggest that FA-HA is a promising candidate for UVB protection in skincare formulations.
Assuntos
Sobrevivência Celular , Ácidos Cumáricos , Células HaCaT , Ácido Hialurônico , Espécies Reativas de Oxigênio , Raios Ultravioleta , Humanos , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/química , Raios Ultravioleta/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Superóxido Dismutase/metabolismo , Polímeros/química , Polímeros/farmacologiaRESUMO
BACKGROUND: The intestinal-liver axis is associated with various liver diseases. Here, we verified the role of the gut microbiota and macrophage activation in the progression of pyrrolizidine alkaloids-induced hepatic sinusoidal obstruction syndrome (PA-HSOS), and explored the possible mechanisms and new treatment options. METHODS: The HSOS murine model was induced by gavage of monocrotaline (MCT). An analysis of 16S ribosomal DNA (16S rDNA) of the feces was conducted to determine the composition of the fecal microbiota. Macrophage clearance, fecal microbiota transplantation (FMT), and butyrate supplementation experiments were used to assess the role of intestinal flora, gut barrier, and macrophage activation and to explore the relationships among these three variables. RESULTS: Activated macrophages and low microflora diversity were observed in HSOS patients and murine models. Depletion of macrophages attenuated inflammatory reactions and apoptosis in the mouse liver. Moreover, compared with control-FMT mice, the exacerbation of severe liver injury was detected in HSOS-FMT mice. Specifically, butyrate fecal concentrations were significantly reduced in HSOS mice, and administration of butyrate could partially alleviated liver damage and improved the intestinal barrier in vitro and in vivo. Furthermore, elevated lipopolysaccharides in the portal vein and high proportions of M1 macrophages in the liver were also detected in HSOS-FMT mice and mice without butyrate treatment, which resulted in severe inflammatory responses and further accelerated HSOS progression. CONCLUSIONS: These results suggested that the gut microbiota exacerbated HSOS progression by regulating macrophage M1 polarization via altered intestinal barrier function mediated by butyrate. Our study has identified new strategies for the clinical treatment of HSOS.
Assuntos
Butiratos , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Hepatopatia Veno-Oclusiva , Fígado , Macrófagos , Animais , Camundongos , Butiratos/metabolismo , Macrófagos/imunologia , Masculino , Humanos , Hepatopatia Veno-Oclusiva/microbiologia , Fígado/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Mucosa Intestinal/microbiologia , Feminino , Fezes/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Função da Barreira IntestinalRESUMO
Background: Colon cancer (CC) stem cells can self-renew as well as expand, thereby promoting tumor progression and conferring resistance to chemotherapeutic agents. The acetyltransferase NAT10 mediates N4-acetylcytidine (ac4C) modification, which in turn drives tumorigenesis, metastasis, stemness properties maintenance, and cell fate decisions. Nonetheless, the specific involvement of ac4C modification mediated by NAT10 in regulating stemness and chemosensitivity in CC remains undetermined. Methods: The levels of NAT10 in normal colon and chemoresistant CC tissues were determined utilizing quantitative real-time polymerase chain reaction alongside immunohistochemistry. Assessing cancer cell stemness and chemosensitivity was conducted by various methods including spheroid and colony formation, western blotting, and flow cytometry. RNA-Seq was used to identify target genes, and RNA immunoprecipitation analysis was used to explore the potential mechanisms. Results: We observed NAT10 overexpression and increased ac4C modification levels in chemoresistant CC tissues. The in vivo and in vitro analysis findings suggested that NAT10 promoted CC cell stemness while suppressing their chemosensitivity. Conversely, Remodelin, a NAT10-specific inhibitor, enhanced CC cell chemosensitivity. Mechanistically, NAT10 increased the level of NANOGP8 ac4C modification and promoted NANOGP8 mRNA stability. Conclusions: NAT10 promotes the maintenance of stemness and chemoresistance in CC cells by augmenting the mRNA stability of NANOGP8. The inhibition of NAT10 via Remodelin improves chemotherapeutic efficacy and impedes CC progression.
RESUMO
BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) and its progressive variant, nonalcoholic steatohepatitis (NASH), constitute a burgeoning worldwide epidemic with no FDA-approved pharmacotherapies. The multifunctional immunometabolic receptor, fatty acid translocase CD36 (CD36), plays an important role in the progression of hepatic steatosis. O-GlcNAcylation is a crucial posttranslational modification that mediates the distribution and function of CD36, but its involvement in NAFLD remains poorly understood. METHODS: O-GlcNAcylation and CD36 expression were evaluated in human liver tissues obtained from NASH patients and normal control. Mice with hepatocyte-specific CD36 knockout were administered adeno-associated viral vectors expressing wild-type CD36 (WT-CD36) or CD36 O-GlcNAcylation site mutants (S468A&T470A-CD36) and were provided with a high-fat/high-cholesterol (HFHC) diet for 3 months. RT-qPCR analysis, immunoblotting, dual-luciferase reporter assays, chromatin immunoprecipitation, and coimmunoprecipitation were performed to explore the mechanisms by which O-GlcNAcylation regulates CD36 expression. Membrane protein extraction, immunofluorescence analysis, site-directed mutagenesis, and fatty acid uptake assays were conducted to elucidate the impact of O-GlcNAcylation on CD36 function. RESULTS: O-GlcNAcylation and CD36 expression were significantly increased in patients with NASH, mouse models of NASH, and palmitic acid-stimulated hepatocytes. Mechanistically, the increase in O-GlcNAcylation facilitated the transcription of CD36 via the NF-κB signalling pathway and stabilized the CD36 protein by inhibiting its ubiquitination, thereby promoting CD36 expression. On the other hand, O-GlcNAcylation facilitated the membrane localization of CD36, fatty acid uptake, and lipid accumulation. However, site-directed mutagenesis of residues S468 and T470 of CD36 reversed these effects. Furthermore, compared with their WT-CD36 counterparts, HFHC-fed S468A&T470A-CD36 mice exhibited decreases in systemic insulin resistance, steatosis severity, inflammation and fibrosis. Pharmacological inhibition of O-GlcNAcylation and CD36 also mitigated the progression of NASH. CONCLUSIONS: O-GlcNAcylation promotes the progression of NAFLD by upregulating CD36 expression and function. Inhibition of CD36 O-GlcNAcylation protects against NASH, highlighting a potentially effective therapeutic approach for individuals with NASH.
Assuntos
Antígenos CD36 , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Progressão da Doença , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Processamento de Proteína Pós-Traducional , Regulação para CimaRESUMO
Background: Overweight and obesity have become public health problems worldwide. An increasing number of research works are focusing on skin physiology and the manifestations of obesity-associated skin diseases, but little is known about the correlations between body mass index (BMI), facial skin physiological parameters, and the facial skin microbiome in healthy women. Objective: To investigate the correlations between BMI, facial skin physiological parameters and facial bacteria and fungi in 198 women aged 18 to 35 years in Shanghai. Methods: According to the international BMI standard and Chinese reference standard, subjects were divided into three groups, "lean" B1, "normal" B2 and "overweight" B3, and the physiological parameters of facial skin were measured by non-invasive instrumental methods, and the skin microbiota was analyzed by 16S rRNA and ITS high-throughput sequencing. Results: Compared with the skin physiological parameters of the normal group, those of the overweight group exhibited a significant increase in trans-epidermal water loss (TEWL), which indicated that the skin barrier was impaired. The skin haemoglobin content was significantly increased, and skin surface pH was significant decreased in those with a high BMI. Furthermore, α-diversity, analysed using the Shannon, Chao, Sobs, and Ace indexes, was increased in the overweight group, suggesting that the diversity and species abundance of facial bacterial and fungal microbiota were also increased. Moreover, the overweight group had higher abundances of Streptococcus, Corynebacterium, Malassezia, and Candida. Notably, skin surface pH was significantly and negatively correlated with the relative abundances of Malassezia, Candida, and Cladosporium. Besides, the abundance of Malassezia was positively associated with the abundances of Staphylococcus and Corynebacterium. Conclusion: These results indicate that BMI is associated with differences in the biophysical properties and microbiome of the facial skin. A high BMI affects the integrity of skin barrier and changes the skin flora diversity and species composition.
RESUMO
This study utilizes network pharmacology analysis to investigate the components, targets, and pathways involved in the treatment of chronic heart failure (CHF) with the combination of "Astragali Radix-Cassia Twig-Poria." The TCMSP, GeneCards, OMIM, PharmGkb, TTD, and DrugBank databases were utilized to identify the active ingredients and targets of this combination for CHF. Protein interactions were derived from the STRING database, and Cytoscape was used to construct the "drug-component-target-disease" network and protein interactions network. The GO function and KEGG signaling pathway were enriched, and molecular docking was performed to verify the stability of the core components and their targets. The study identified 41 active ingredients, 101 targets (including 94 related to CHF), 9 core targets, and 26 core ingredients of "Astragali Radix-Cassia Twig-Poria." Additionally, 1444 GO entries and 140 KEGG pathways (including 36 related to CHF) were found. Molecular docking results confirmed the binding ability of the combination to core targets. Overall, this study provides valuable insights into the key components, targets, and pathways involved in the treatment of CHF with "Astragali Radix-Cassia Twig-Poria," contributing to further research on its pharmacological effects.
Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Simulação de Acoplamento Molecular , Farmacologia em Rede , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doença Crônica/tratamento farmacológico , Astrágalo/química , Mapas de Interação de Proteínas/efeitos dos fármacosRESUMO
Bifidobacteria are the most prevalent members of the intestinal microbiota in mammals and other animals, and they play a significant role in promoting gut health through their probiotic effects. Recently, the potential applications of Bifidobacteria have been extended to skin health. However, the beneficial mechanism of Bifidobacteria on the skin barrier remains unclear. In this study, keratinocyte HaCaT cells were used as models to evaluate the protective effects of the cell-free supernatant (CFS), heat-inactivated bacteria, and bacterial lysate of Bifidobacterium animalis CGMCC25262 on the skin barrier and inflammatory cytokines. The results showed that all the tested samples were able to upregulate the transcription levels of biomarker genes associated with the skin barrier, such as hyaluronic acid synthetase (HAS) and aquaporins (AQPs). Notably, the transcription of the hyaluronic acid synthetase gene-2 (HAS-2) is upregulated by 3~4 times, and AQP3 increased by 2.5 times when the keratinocyte HaCaT cells were co-incubated with 0.8 to 1% CFS. In particular, the expression level of Filaggrin (FLG) in HaCaT cells increased by 1.7 to 2.7 times when incubated with Bifidobacterial samples, reaching its peak at a concentration of 0.8% CFS. Moreover, B. animalis CGMCC25262 also decreased the expression of the proinflammatory cytokine RANTES to one-tenth compared to the levels observed in HaCaT cells induced with tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). These results demonstrate the potential of B. animalis CGMCC25262 in protecting the skin barrier and reducing inflammatory response.
Assuntos
Bifidobacterium animalis , Proteínas Filagrinas , Células HaCaT , Queratinócitos , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Humanos , Bifidobacterium animalis/fisiologia , Citocinas/metabolismo , Probióticos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Hialuronan Sintases/metabolismo , Hialuronan Sintases/genética , Interferon gama/metabolismo , Linhagem Celular , Pele/microbiologia , Aquaporina 3/metabolismo , Aquaporina 3/genética , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Filamentos Intermediários/genéticaRESUMO
The complete genome sequence of Cutibacterium acnes Type II strain CCSM0331, which was isolated from the healthy facial skin, is reported. The assembled 2.5-Mbp genome comprised a single circular chromosome. These data will provide valuable information on the beneficial role of C. acnes as a skin commensal bacteria.
RESUMO
Persistent hepatic cellular metabolic stress and liver inflammatory stimuli are key signatures of nonalcoholic steatohepatitis (NASH). DDX3X is a vital molecule involved in cell fate decisions in both pro-survival stress granule (SG) and pro-death NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome assembly in response to stress signals. However, the role of DDX3X in NASH remains unclear. We characterized the cell type-specific roles of DDX3X in NASH. Human liver tissues from NASH patients and normal control subjects were collected to assess DDX3X expression and distribution. Nutritional steatohepatitis models were constructed by feeding macrophage-specific DDX3X knockout (DDX3XΔMφ), hepatocyte-specific DDX3X knockout (DDX3XΔhep), and wild-type control (DDX3Xfl/fl) mice a high-fat and high-cholesterol (HFHC) diet, a methionine- and choline-deficient (MCD) diet, and a high-fat/high-iron/high-fructose/high-cholesterol, low-methionine, and choline-deficient (HFHIHFHC-MCD) diet. The study demonstrated that DDX3X was predominantly expressed in macrophages and hepatocytes in control liver tissues, and its expression was down-regulated in patients or mice with NASH. Compared to DDX3Xfl/fl littermates, DDX3XΔMφ mice showed improved liver histology in nutritional steatohepatitis models. Loss of macrophage DDX3X inhibited NLRP3 inflammasome-mediated pyroptosis, causing anti-inflammatory M2 polarization and alleviating hepatocyte steatohepatitic changes. DDX3XΔhep mice developed marked steatohepatitis in multiple nutritional steatohepatitis models compared to DDX3Xfl/fl littermates. DDX3X-deleted hepatocytes showed impaired SG assembly, leading to increased sensitivity and intolerance to metabolic stimulation and resultant steatohepatitis. In conclusion, DDX3X plays opposite roles in different cell types during the progression of NASH. A better understanding of the cell-specific differences in the crosstalk between SG formation and NLRP3 activation is crucial for developing prospective targeted DDX3X inhibitors for the treatment of NASH.
RESUMO
Cordyceps cicadae (Miq.) is an edible fungus with unique and valuable medicinal properties that is commonly used in traditional Chinese medicine, but its anti-aging effects on the skin fibroblast are not well studied. The aim of the present study was to analyze the active components of aqueous C. cicadae extract (CCE), determine the effects of CCE on hyaluronan synthesis in human skin fibroblasts, and explore the underlying mechanisms. The results of this study indicate that CCE was rich in polysaccharides, five alditols (mainly mannitol), eight nucleosides, protein, and polyphenols, which were present at concentrations of 62.7, 110, 8.26, 35.7, and 3.8 mg/g, respectively. The concentration of extract required to inhibit 50% of 2,2-azino-bis (3-ethylbenzothiazo-line-6-sulphonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging capacities were 0.36 ± 0.03 and 4.54 ± 0.10 mg/mL, respectively, indicating that CCE exhibits excellent antioxidant activities. CCE showed no cytotoxicity to skin fibroblasts at concentrations ≤ 100 µg/mL, and promoted HA synthesis in fibroblasts. Treatment of fibroblast cells with 100 µg/mL CCE enhances the HA content to 1293 ± 142 ng/mL, which is significantly more than that in the non-treatment (NT) group (p = 0.0067). Further, RNA sequencing detected 1,192 differentially expressed genes (DEGs) in CCE-treated fibroblasts, among which 417 were upregulated and 775 were downregulated. Kyoto Encyclopedia of Genes (KEGG) and Genomes pathway (GO) analysis based on RNA sequencing revealed that CCE mainly affected cytokine-cytokine receptor interaction regulated by HA synthesis-related genes. CCE upregulated HA synthase 2 (HAS2), epidermal growth factor (EGF)-related genes, heparin-binding EGF-like growth factor, C-C motif chemokine ligand 2, interleukin 1 receptor-associated kinase 2, and other genes related to fibroblast differentiation and proliferation. CCE downregulated the gene of matrix metallopeptidase 12 (MMP12), which leads to cell matrix loss. RT-qPCR further verified CCE significantly upregulated HAS2 expression and significantly downregulated MMP12 expression, thus promoting hyaluronan synthesis. CCE shows potential as a moisturizer and anti-aging agent in functional foods and cosmetics.
Assuntos
Cordyceps , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Hialuronan Sintases , Cordyceps/metabolismo , Envelhecimento , Fibroblastos/metabolismoRESUMO
Drug-induced liver injury (DILI) is the leading cause of acute liver failure (ALF). Continuous and prolonged hepatic cellular oxidative stress and liver inflammatory stimuli are key signatures of DILI. DEAD-box helicase 3, X-linked (DDX3X) is a central regulator in pro-survival stress granule (SG) assembly in response to stress signals. However, the role of DDX3X in DILI remains unknown. Herein, we characterized the hepatocyte-specific role of DDX3X in DILI. Human liver tissues of DILI patients and control subjects were used to evaluate DDX3X expression. APAP, CCl4 and TAA models of DILI were established and compared between hepatocyte-specific DDX3X knockout (DDX3XΔhep) and wild-type control (DDX3Xfl/fl) mice. Hepatic expression of DDX3X was significantly decreased in the pathogenesis of DILI compared with controls in human and mice. Compared to DDX3Xfl/fl mice, DDX3XΔhep mice developed significant liver injury in multiple DILI models. DDX3X deficiency aggravates APAP induced oxidative stress and hepatocyte death by affecting the pro-survival stress granule (SG) assembly. Moreover, DDX3X deficiency induces inflammatory responses and causes pronounced macrophage infiltration. The use of targeted DDX3X drug maybe promising for the treatment of DILI in human.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Grânulos de Estresse , Animais , Humanos , Camundongos , Doença Hepática Induzida por Substâncias e Drogas/patologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Estresse OxidativoRESUMO
BACKGROUND: HCC characterizes malignant metastasis with high incidence and recurrence. Thus, it is pivotal to discover the mechanisms of HCC metastasis. TATA-box-binding protein (TBP), a general transcriptional factor (TF), couples with activators and chromatin remodelers to sustain the transcriptional activity of target genes. Here, we investigate the key role of TBP in HCC metastasis. METHODS: TBP expression was measured by PCR, western blot, and immunohistochemistry. RNA-sequencing was performed to identify downstream proteins. Functional assays of TBP and downstream targets were identified in HCC cell lines and xenograft models. Luciferase reporter and chromatin immunoprecipitation assays were used to demonstrate the mechanism mediated by TBP. RESULTS: HCC patients showed high expression of TBP, which correlated with poor prognosis. Upregulation of TBP increased HCC metastasis in vivo and in vitro, and muscleblind-like-3 (MBNL3) was the effective factor of TBP, positively related to TBP expression. Mechanically, TBP transactivated and enhanced MBNL3 expression to stimulate exon inclusion of lncRNA-paxillin (PXN)-alternative splicing (AS1) and, thus, activated epithelial-mesenchymal transition for HCC progression through upregulation of PXN. CONCLUSIONS: Our data revealed that TBP upregulation is an HCC enhancer mechanism that increases PXN expression to drive epithelial-mesenchymal transition.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína de Ligação a TATA-Box , Humanos , Bioensaio , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/genética , Proteínas de Ligação a RNA/genética , Proteína de Ligação a TATA-Box/genética , AnimaisRESUMO
Cytochrome P450 153 A (CYP153A) is a versatile enzyme that can catalyze a wide range of oxidation reactions on various substrates. This review provides a comprehensive overview of the current state of knowledge on CYP153A, including its classification, structure, function, and potential applications in biotechnology and pharmaceuticals. The CYP153A family encompasses many enzymes with different functions on a variety of substrates. We also discuss the structural features that are responsible for the different substrate specificities. Additionally, the enzyme has been engineered to increase its catalytic activity and modifications have been made to enhance its properties further. Despite its potential, challenges and limitations associated with studying and exploiting CYP153A remain, such as low expression levels and substrate inhibition. Nonetheless, ongoing research is exploring new ways to harness the enzyme's capabilities, particularly in synthetic biology, biocatalysis, and drug discovery, making it an exciting target for future research.
Assuntos
Biotecnologia , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Biocatálise , Catálise , Especificidade por SubstratoRESUMO
BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) consists of a broad spectrum of conditions, and nonalcoholic steatohepatitis (NASH) is the advanced form of NAFLD. TAF15 is a DNA and RNA binding protein and is involved in crucial inflammatory signalling pathways. We aimed to investigate the role of TAF15 in the progression of NASH and the underlying molecular mechanism. METHODS: We generated mice with hepatocyte-specific knockdown and overexpression of TAF15 using a specific adeno-associated virus (AAV). NASH models were established by feeding mice high-fat and high-cholesterol diets and methionine- and choline-deficient diets. Cleavage under targets and tagmentation and dual-luciferase reporter assays were performed to investigate the effect of TAF15 on FASN transcription. Coimmunoprecipitation and immunofluorescence assays were conducted to explore the interaction of TAF15 and p65. In vitro coculture systems were established to study the interactions of hepatocytes, macrophages and HSCs. RESULTS: TAF15 was significantly increased in the livers of mouse NASH models and primary hepatocyte NASH model. Knockdown of TAF15 inhibited steatosis, inflammation and fibrosis, while overexpression of TAF15 promoted NASH phenotypes. Mechanistically, TAF15 bound directly to the promoter region of FASN to facilitate its expression, thereby promoting steatosis. Moreover, TAF15 interacted with p65 and activated the NF-κB signalling pathway, increasing the secretion of proinflammatory cytokines and triggering M1 macrophage polarization. Treatment with the FASN inhibitor orlistat partially reversed the phenotypes. CONCLUSIONS: These results suggested that TAF15 exacerbated NASH progression by regulating lipid metabolism and inflammation via transcriptional activation of FASN and interacting with p65 to activate the NF-κB signalling pathway.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Fatores Associados à Proteína de Ligação a TATA , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fatores Associados à Proteína de Ligação a TATA/metabolismoRESUMO
Porcine epidemic diarrhea virus (PEDV) has caused huge economic losses to the global pig industry. The swine enteric coronavirus spike (S) protein recognizes various cell surface molecules to regulate viral infection. In this study, we identified 211 host membrane proteins related to the S1 protein by pulldown combined with liquid-chromatography tandem mass spectrometry (LC-MS/MS) analysis. Among these, heat shock protein family A member 5 (HSPA5) was identified through screening as having a specific interaction with the PEDV S protein, and positive regulation of PEDV infection was validated by knockdown and overexpression tests. Further studies verified the role of HSPA5 in viral attachment and internalization. In addition, we found that HSPA5 interacts with S proteins through its nucleotide-binding structural domain (NBD) and that polyclonal antibodies can block viral infection. In detail, HSPA5 was found to be involved in viral trafficking via the endo-/lysosomal pathway. Inhibition of HSPA5 activity during internalization would reduce the subcellular colocalization of PEDV with lysosomes in the endo-/lysosomal pathway. Together, these findings show that HSPA5 is a novel PEDV potential target for the creation of therapeutic drugs. IMPORTANCE PEDV infection causes severe piglet mortality and threatens the global pig industry. However, the complex invasion mechanism of PEDV makes its prevention and control difficult. Here, we determined that HSPA5 is a novel target for PEDV which interacts with its S protein and is involved in viral attachment and internalization, influencing its transport via the endo-/lysosomal pathway. Our work extends knowledge about the relationship between the PEDV S and host proteins and provides a new therapeutic target against PEDV infection.
Assuntos
Infecções por Coronavirus , Chaperona BiP do Retículo Endoplasmático , Vírus da Diarreia Epidêmica Suína , Glicoproteína da Espícula de Coronavírus , Doenças dos Suínos , Internalização do Vírus , Animais , Chlorocebus aethiops , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos , Doenças dos Suínos/fisiopatologia , Doenças dos Suínos/virologia , Células Vero , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Ligação Viral , Endocitose/genéticaRESUMO
BACKGROUND: The regularity of the menstrual cycle directly affects women's health. Many studies have focused on menstrual health; however, menstrual cycle regularity-related variations in skin physiological characteristics and skin microbiota have been seldom investigated. METHODS: To investigate the menstrual cycle regularity-related variations in skin physiological characteristics and skin microbiota of 197 cases of Chinese women aged 18-35 years living in shanghai in 2021. Based on a self-evaluation questionnaire, the volunteers were divided into three groups C1 (those with a regular menstrual cycle), C2 (those with a less regular menstrual cycle) and C3 (those with an irregular menstrual cycle). The physiological parameters of facial skin were measured by non-invasive methods and the skin microbiome was analyzed by 16S rRNA high-throughput sequencing. RESULTS: In the C3 group, the hydration content was significantly decreased (p < 0.05), the TEWL was significantly increased (p < 0.05), and the sebum content was increased (p > 0.05), indicating that the skin barrier integrity weakened with increased menstrual cycle irregularity. Additionally, the melanin level, L value and b value were significantly decreased (p < 0.05) in the C3 group, but the a value was significantly increased (p < 0.001), which indicated that the skin color became darker. Furthermore, the skin microbiota diversity decreased with increasing cycle irregularity, but the differences were not significant. The skin microbiota composition showed that the proportion of Firmicutes, Acinetobacter, Staphylococcus and Cutibacterium were increased in those with an irregular menstrual cycle, indicating that alterations in the ratio of bacterial phyla and/or genera might disturb skin homeostasis. Spearman correlation analysis revealed strong correlations between the microbiota and skin physiological parameters. Based on the associations among hormones, skin physiological parameters and skin microbiota, it is possible that the skin physiological parameters, as well as the skin microbial diversity and composition, change with hormonal fluctuations during the menstrual cycle. CONCLUSIONS: An irregular menstrual cycle can affect skin physiological characteristics and the skin microbiota. Female with an irregular menstrual cycle should strengthen skin care practices and use skin care products with moisturising and soothing effects to protect their skin.
Assuntos
População do Leste Asiático , Distúrbios Menstruais , Microbiota , Pele , Feminino , Humanos , China , Ciclo Menstrual , RNA Ribossômico 16S/genética , Pele/microbiologiaRESUMO
Staphylococcus epidermidis strain CCSM0287 was isolated from healthy facial skin. The complete genome of CCSM0287 was sequenced using a combination of Pacific Biosciences (PacBio) RS II single-molecule real-time (SMRT) and Illumina sequencing. The assembled 2.5-Mbp genome consisted of one chromosome and three plasmids.
RESUMO
Staphylococcus capitis strain CCSM0123 was isolated from healthy facial skin. The complete genome of CCSM0123 was sequenced using a combination of Pacific Biosciences (PacBio) RS II single-molecule real-time (SMRT) and Illumina sequencing. The assembled 2.5-Mbp genome consisted of one chromosome and four plasmids.
RESUMO
Purpose: Everyone pursues perfect skin, but there exist significant differences between cultures, and no commonly accepted standards have been established. Therefore, our study attempted to define the "ideal skin" of oriental women and analyze the relationship between different skin physiological parameters and microbiomes. Patients and Methods: Based on our customized grading standard, the VISIA CR photos of 111 young women aged from 18 to 25 in Shanghai were collected and scored by the severity of pores, acne, spots, and wrinkles. The volunteers were then divided into "ideal skin" (W1), "normal skin" (W2), and "undesirable skin" (W3) groups. The physiological parameters of facial skin were measured by non-invasive instrumental methods, and the skin microbiome was analyzed by 16S rRNA and ITS high-throughput sequencing. Results: From "ideal skin" to "undesirable skin", the skin physiological parameters, α-diversity, and composition of the facial microbiome showed noticeable regular changes. Compared with the "normal skin" (W2) and "undesirable skin" (W3), the "ideal skin" (W1) group had lower sebum content, TEWL, melanin, hemoglobin, and roughness but higher hydration content and skin pH value. Furthermore, the Shannon index of skin bacteria was significantly increased in W1 (P = 0.004), suggesting that the ideal skin had higher species diversity. From W1 to W3, the species composition was changed significantly. The abundance of Actinobacteria was increased, while Proteobacteria and Bacteroidetes were decreased. Correspondingly, the abundances of lipophilic Propionibacterium and Malassezia were increased, while the abundances of Stenotrophomonas, Pseudomonas, Ralstonia, and Streptococcus, were significantly decreased. Additionally, Spearman correlation analysis revealed strong correlations between the physiological parameters and the microbiota. Notably, the Shannon index of skin bacteria was significantly positively correlated with skin hydration (P = 0.03) but negatively correlated with the abundance of Cutibacterium (P = 0.000), hemoglobin content (P = 0.025), and sebum content (P = 0.5). Therefore, the skin hydration content and the abundance of Cutibacterium played an important role in maintaining the α-diversity and skin homeostasis. Conclusion: Ideal skin had better water-oil balance and barrier function, higher microbial diversity, and more reasonable species distribution. Therefore, daily skincare needs to control skin oil and maintain skin microecological balance to achieve ideal skin conditions for young women aged 18-25 years old.