Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Comput Biol Med ; 171: 108206, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430745

RESUMO

INTRODUCTION: The rapid growth of omics technologies has led to the use of bioinformatics as a powerful tool for unravelling scientific puzzles. However, the obstacles of bioinformatics are compounded by the complexity of data processing and the distinct nature of omics data types, particularly in terms of visualization and statistics. OBJECTIVES: We developed a comprehensive and free platform, CFViSA, to facilitate effortless visualization and statistical analysis of omics data by the scientific community. METHODS: CFViSA was constructed using the Scala programming language and utilizes the AKKA toolkit for the web server and MySQL for the database server. The visualization and statistical analysis were performed with the R program. RESULTS: CFViSA integrates two omics data analysis pipelines (microbiome and transcriptome analysis) and an extensive array of 79 analysis tools spanning simple sequence processing, visualization, and statistics available for various omics data, including microbiome and transcriptome data. CFViSA starts from an analysis interface, paralleling a demonstration full course to help users understand operating principles and scientifically set the analysis parameters. Once analysis is conducted, users can enter the task history interface for figure adjustments, and then a complete series of results, including statistics, feature tables and figures. All the graphic layouts were printed with necessary statistics and a traceback function recording the options for analysis and visualization; these statistics were excluded from the five competing methods. CONCLUSION: CFViSA is a user-friendly bioinformatics cloud platform with detailed guidelines for integrating functions in multi-omics analysis with real-time visualization adjustment and complete series of results provision. CFViSA is available at http://www.cloud.biomicroclass.com/en/CFViSA/.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Bases de Dados Factuais , Transcriptoma , Software
2.
Elife ; 122023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706503

RESUMO

While bacterial diversity is beneficial for the functioning of rhizosphere microbiomes, multi-species bioinoculants often fail to promote plant growth. One potential reason for this is that competition between different species of inoculated consortia members creates conflicts for their survival and functioning. To circumvent this, we used transposon insertion mutagenesis to increase the functional diversity within Bacillus amyloliquefaciens bacterial species and tested if we could improve plant growth promotion by assembling consortia of highly clonal but phenotypically dissimilar mutants. While most insertion mutations were harmful, some significantly improved B. amyloliquefaciens plant growth promotion traits relative to the wild-type strain. Eight phenotypically distinct mutants were selected to test if their functioning could be improved by applying them as multifunctional consortia. We found that B. amyloliquefaciens consortium richness correlated positively with plant root colonization and protection from Ralstonia solanacearum phytopathogenic bacterium. Crucially, 8-mutant consortium consisting of phenotypically dissimilar mutants performed better than randomly assembled 8-mutant consortia, suggesting that improvements were likely driven by consortia multifunctionality instead of consortia richness. Together, our results suggest that increasing intra-species phenotypic diversity could be an effective way to improve probiotic consortium functioning and plant growth promotion in agricultural systems.


Assuntos
Bacillus amyloliquefaciens , Probióticos , Bacillus amyloliquefaciens/genética , Rizosfera , Engenharia , Agricultura
3.
Mol Plant ; 16(9): 1379-1395, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37563832

RESUMO

The RIPENING-INHIBITOR (RIN) transcriptional factor is a key regulator governing fruit ripening. While RIN also affects other physiological processes, its potential roles in triggering interactions with the rhizosphere microbiome and plant health are unknown. Here we show that RIN affects microbiome-mediated disease resistance via root exudation, leading to recruitment of microbiota that suppress the soil-borne, phytopathogenic Ralstonia solanacearum bacterium. Compared with the wild-type (WT) plant, RIN mutants had different root exudate profiles, which were associated with distinct changes in microbiome composition and diversity. Specifically, the relative abundances of antibiosis-associated genes and pathogen-suppressing Actinobacteria (Streptomyces) were clearly lower in the rhizosphere of rin mutants. The composition, diversity, and suppressiveness of rin plant microbiomes could be restored by the application of 3-hydroxyflavone and riboflavin, which were exuded in much lower concentrations by the rin mutant. Interestingly, RIN-mediated effects on root exudates, Actinobacteria, and disease suppression were evident from the seedling stage, indicating that RIN plays a dual role in the early assembly of disease-suppressive microbiota and late fruit development. Collectively, our work suggests that, while plant disease resistance is a complex trait driven by interactions between the plant, rhizosphere microbiome, and the pathogen, it can be indirectly manipulated using "prebiotic" compounds that promote the recruitment of disease-suppressive microbiota.


Assuntos
Microbiota , Microbiologia do Solo , Rizosfera , Resistência à Doença , Raízes de Plantas/microbiologia , Plantas/microbiologia , Bactérias , Exsudatos e Transudatos
4.
Light Sci Appl ; 12(1): 9, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36588110

RESUMO

Multicolor imaging allows protein colocalizations and organelle interactions to be studied in biological research, which is especially important for single-molecule localization microscopy (SMLM). Here, we propose a multicolor method called excitation-resolved stochastic optical reconstruction microscopy (ExR-STORM). The method, which is based on the excitation spectrum of fluorescent dyes, successfully separated four spectrally very close far-red organic fluorophores utilizing three excitation lasers with cross-talk of less than 3%. Dyes that are only 5 nm apart in the emission spectrum were resolved, resulting in negligible chromatic aberrations. This method was extended to three-dimensional (3D) imaging by combining the astigmatic method, providing a powerful tool for resolving 3D morphologies at the nanoscale.

5.
Microbiol Spectr ; 10(6): e0357222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453930

RESUMO

Bio-organic fertilizers (BOF) containing both organic amendments and beneficial microorganisms have been consistently shown to improve soils fertility and yield. However, the exact mechanisms which link amendments and yields remain disputed, and the complexity of bio-organic fertilizers may work in parallel in several ways. BOF may directly improve yield by replenishing soil nutrients or introducing beneficial microbial genes or indirectly by altering the soil microbiome to enrich native beneficial microorganisms. In this work, we aim to disentangle the relative contributions of direct and indirect effects on pear yield. We treated pear trees with either chemical fertilizer or organic fertilizer with/without the plant-beneficial bacterium Bacillus velezensis SQR9. We then assessed, in detail, soil physicochemical and biological properties (metagenome sequencing) as well as pear yield. We then evaluated the relative importance of direct and indirect effects of soil amendments on pear yield. Both organic treatments increased plant yield by up to 20%, with the addition of bacteria tripling the increase driven by organic fertilizer alone. This increase could be linked to alterations in soil physicochemical properties, bacterial community function, and metabolism. Supplementation of organic fertilizer SQR9 increased rhizosphere microbiome richness and functional diversity. Fertilizer-sensitive microbes and functions responded as whole guilds. Pear yield was most positively associated with the Mitsuaria- and Actinoplanes-dominated ecological clusters and with gene clusters involved in ion transport and secondary metabolite biosynthesis. Together, these results suggested that bio-organic fertilizers mainly act indirectly on plant yield by creating soil chemical properties which promote a plant-beneficial microbiome. IMPORTANCE Bio-organic fertilization is a widely used, eco-friendly, sustainable approach to increasing plant productivity in the agriculture and fruit industries. However, it remains unclear whether the promotion of fruit productivity is related to specific changes in microbial inoculants, the resident microbiome, and/or the physicochemical properties of rhizosphere soils. We found that bio-organic fertilizers alter soil chemical properties, thus manipulating specific microbial taxa and functions within the rhizosphere microbiome of pear plants to promote yield. Our work unveils the ecological mechanisms which underlie the beneficial impacts of bio-organic fertilizers on yield promotion in fruit orchards, which may help in the design of more efficient biofertilizers to promote sustainable fruit production.


Assuntos
Microbiota , Pyrus , Fertilizantes/análise , Rizosfera , Solo/química , Bactérias , Microbiologia do Solo
6.
Front Plant Sci ; 13: 1039671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311108

RESUMO

It's been long known that the application of organic fertilizer (OF) and bio-organic fertilizer (BF) which containing beneficial microorganisms to pear trees can both significantly improve fruit quality and yield. In order to reveal the mechanism of BF and OF regulating fruit growth and quality in pear, the effects of BF and OF on the photosynthetic characteristics and the accumulation of major sugars and organic acids of the pear fruit were quantified compared with chemical fertilizer (CF). Additionally, the molecular mechanisms regulating pear fruit development and quality were studied through transcriptome analysis. The three treatments were conducted based on the same amounts of nitrogen supply. The results showed that compared with CF, BF and OF treatments increased the fruit yield, and also significantly improved the photosynthesis efficiency in pear. BF and OF both significantly increased the sucrose content but significantly decreased the fructose and glucose content within the pear fruit. The amount of malic acid was significantly higher in OF treatment. Compared with CF and OF, BF significantly increased the sugar-acid ratio and thus improved the fruit quality. Transcriptome analysis and weighted correlation network analysis (WGCNA) revealed that the sugar metabolism of fruits applied with the BF was enhanced compared with those applied with CF or OF. More specifically, the expression of SDH (Sorbitol dehydrogenase) was higher in BF, which converts sorbitol into fructose. For both of the OF and BF, the transcript abundance of sugar transporter genes was significantly increased, such as SOT (Sorbitol transporter), SUT14 (Sugar transport 14), UDP-GLUT4 (UDP-glucose transporter 4), UDP-SUT (UDP-sugar transporter), SUC4 (Sucrose transport 4), SUT7 (Sugar transporter 7), SWEET10 and SWEET15 (Bidirectional sugar transporter), which ensures sugar transportation. The genes involved in organic acid metabolism showed decreased transcripts abundance in both BF and OF treatments, such as VAP (Vesicle-associated protein) and cyACO (Cytosolic aconitase), which reduce the conversion from succinate to citric acid, and decrease the conversion from citric acid to malic acid in the TCA cycle (Tricarboxylic Acid cycle) through Pept6 (Oligopeptide transporter). In conclusion, the application of BF and OF improved fruit quality by regulating the expression of sugar and organic acid metabolism-related genes and thus altering the sugar acid metabolism. Both BF and OF promote sucrose accumulation and citric acid degradation in fruits, which may be an important reason for improving pear fruit quality. The possible mechanism of bio-organic fertilizer to improve fruit quality was discussed.

7.
Environ Microbiol ; 24(12): 5680-5689, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053873

RESUMO

Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively shape invasion resistance. Here, we use resource availability (RA) as a model parameter altering the resistance of model bacterial communities to invasion by the plant pathogenic bacterium Ralstonia solanacearum. We found that at high RA, interactions between resident bacterial species were mainly driven by the direct antagonism, in terms of the means of invader inhibition. Consequently, the competitive resident communities with a higher production of antibacterial were invaded to a lesser degree than facilitative communities. At low RA, bacteria produced little direct antagonist potential, but facilitative communities reached a relatively higher community productivity, which showed higher resistance to pathogen invasion than competitive communities with lower productivities. This framework may lay the basis to understand complex microbial interactions and biological invasion as modulated by the dynamic changes of environmental resource availability.


Assuntos
Bactérias , Ralstonia solanacearum , Bactérias/genética , Plantas , Interações Microbianas
8.
ISME Commun ; 2(1): 10, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938685

RESUMO

The development of strategies for effectively manipulating and engineering beneficial plant-associated microbiomes is a major challenge in microbial ecology. In this sense, the efficacy and potential implications of rhizosphere microbiome transplant (RMT) in plant disease management have only scarcely been explored in the literature. Here, we initially investigated potential differences in rhizosphere microbiomes of 12 Solanaceae eggplant varieties and accessed their level of resistance promoted against bacterial wilt disease caused by the pathogen Ralstonia solanacearum, in a 3-year field trial. We elected 6 resistant microbiomes and further tested the broad feasibility of using RMT from these donor varieties to a susceptible model Solanaceae tomato variety MicroTom. Overall, we found the rhizosphere microbiome of resistant varieties to enrich for distinct and specific bacterial taxa, of which some displayed significant associations with the disease suppression. Quantification of the RMT efficacy using source tracking analysis revealed more than 60% of the donor microbial communities to successfully colonize and establish in the rhizosphere of recipient plants. RTM from distinct resistant donors resulted in different levels of wilt disease suppression, reaching up to 47% of reduction in disease incidence. Last, we provide a culture-dependent validation of potential bacterial taxa associated with antagonistic interactions with the pathogen, thus contributing to a better understanding of the potential mechanism associated with the disease suppression. Our study shows RMT from appropriate resistant donors to be a promising tool to effectively modulate protective microbiomes and promote plant health. Together we advocate for future studies aiming at understanding the ecological processes and mechanisms mediating rates of coalescence between donor and recipient microbiomes in the plant rhizosphere.

9.
Front Plant Sci ; 13: 1040134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699828

RESUMO

Background: Arbuscular mycorrhizal fungi (AMF) are beneficial soil fungi which can effectively help plants with acquisition of mineral nutrients and water and promote their growth and development. The effects of indigenous and commercial isolates of arbuscular mycorrhizal fungi on pear (Pyrus betulaefolia) trees, however, remains unclear. Methods: Trifolium repens was used to propagate indigenous AMF to simulate spore propagation in natural soils in three ways: 1. the collected soil was mixed with fine roots (R), 2. fine roots were removed from the collected soil (S), and 3. the collected soil was sterilized with 50 kGy 60Co γ-radiation (CK). To study the effects of indigenous AMF on root growth and metabolism of pear trees, CK (sterilized soil from CK in T. repens mixed with sterilized standard soil), indigenous AMF (R, soil from R in T. repens mixed with sterilized standard soil; S, soil from S in T. repens mixed with sterilized standard soil), and two commercial AMF isolates (Rhizophagus intraradices(Ri) and Funneliformis mosseae (Fm)) inoculated in the media with pear roots. Effects on plant growth, root morphology, mineral nutrient accumulation, metabolite composition and abundance, and gene expression were analyzed. Results: AMF treatment significantly increased growth performance, and altered root morphology and mineral nutrient accumulation in this study, with the S treatment displaying overall better performance. In addition, indigenous AMF and commercial AMF isolates displayed common and divergent responses on metabolite and gene expression in pear roots. Compared with CK, most types of flavones, isoflavones, and carbohydrates decreased in the AMF treatment, whereas most types of fatty acids, amino acids, glycerolipids, and glycerophospholipids increased in response to the AMF treatments. Further, the relative abundance of amino acids, flavonoids and carbohydrates displayed different trends between indigenous and commercial AMF isolates. The Fm and S treatments altered gene expression in relation to root metabolism resulting in enriched fructose and mannose metabolism (ko00051), fatty acid biosynthesis (ko00061) and flavonoid biosynthesis (ko00941). Conclusions: This study demonstrates that indigenous AMF and commercial AMF isolates elicited different effects in pear plants through divergent responses from gene transcription to metabolite accumulation.

10.
Microorganisms ; 9(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34946058

RESUMO

Plant hormones have been recently shown to exert an indirect influence on the recruitment of plant-associated microbiomes. However, it remains unclear the extent to which the disruption of the ethylene (ET) signaling pathway affects the assembly and functioning of plant-root microbiomes. In this study, the Never-ripe tomato mutant (Nr) was profiled for differences compared to the wild type (control). Tomato plants were subjected to root exudate profiling and the characterization of bacterial and fungal communities. Compared to the control, Nr revealed differences in the composition of root exudates, including lower amounts of esculetin, gallic acid, L-fucose, eicosapentaenoic acid, and higher amounts of ß-aldehyde. Interestingly, Nr significantly differed in the composition and functioning of the rhizosphere bacterial community. We also identified the taxa that occurred at relatively higher abundances in Nr, including the genus Lysobacter, which displayed a significant negative correlation with changes in eicosapentaenoic acid and esculetin, and a significant positive correlation with changes in ß-aldehyde. Taken together, our study provides evidence that a mutation in the ET receptor exerts predictable changes in the root-associated microbial taxa of tomato plants. These indirect effects can potentially be explored towards new strategies to engineer beneficial plant microbiomes via targeted changes in plant genetics and physiology.

11.
Proc Biol Sci ; 288(1960): 20211396, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641724

RESUMO

Plant growth depends on a range of functions provided by their associated rhizosphere microbiome, including nutrient mineralization, hormone co-regulation and pathogen suppression. Improving the ability of plant-associated microbiomes to deliver these functions is thus important for developing robust and sustainable crop production. However, it is yet unclear how beneficial effects of probiotic microbial inoculants can be optimized and how their effects are mediated. Here, we sought to enhance tomato plant growth by targeted introduction of probiotic bacterial consortia consisting of up to eight plant-associated Pseudomonas strains. We found that the effect of probiotic consortium inoculation was richness-dependent: consortia that contained more Pseudomonas strains reached higher densities in the tomato rhizosphere and had clearer beneficial effects on multiple plant growth characteristics. Crucially, these effects were best explained by changes in the resident community diversity, composition and increase in the relative abundance of initially rare taxa, instead of introduction of plant-beneficial traits into the existing community along with probiotic consortia. Together, our results suggest that beneficial effects of microbial introductions can be driven indirectly through effects on the diversity and composition of the resident plant rhizosphere microbiome.


Assuntos
Microbiota , Probióticos , Bactérias , Raízes de Plantas , Rizosfera , Microbiologia do Solo
12.
Waste Manag ; 131: 350-358, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34237529

RESUMO

While both bacteria and fungi are important for the degradation and humification of organic matter during composting, it is unclear to what extent their roles are associated with abiotic compost properties. This study evaluated changes in abiotic compost properties and the succession of bacterial and fungal communities during pig manure composting for 90 days. The compost rapidly reached thermophilic phase (>58 ℃), which lasted for 15 days. Both bacterial and fungal community compositions changed drastically during composting and while bacterial diversity increased, the fungal diversity decreased during the thermophilic phase of composting. Two taxa dominated both bacterial (Bacillales and Clostridiales) and fungal (Eurotiales and Glomerellales) communities and these showed alternating abundance fluctuations following different phases of composting. The abundance fluctuations of most dominant bacterial and fungal taxa could be further associated with decreases in the concentrations of fulvic acid, cellulose, hemicellulose and overall biodegradation potential in the compost. Moreover, bacterial predicted metabolic gene abundances dominated the first three phases of composting, while predicted fungal saprotrophic functional genes increased consistently, reaching highest abundances towards the end of composting. Finally, redundancy analysis (RDA) showed that changes in abiotic compost properties correlated with the bacterial community diversity and carbohydrate metabolism and fungal wood saprotrophic function. Together these results suggests that bacterial and fungal community succession was associated with temporal changes in abiotic compost properties, potentially explaining alternating taxa abundance patterns during pig manure composting.


Assuntos
Ascomicetos , Compostagem , Micobioma , Animais , Bactérias/genética , Esterco , Solo , Suínos
13.
Bioresour Technol ; 331: 125049, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33798862

RESUMO

This study aimed to isolate psychrotrophic cellulose-degrading fungi and to investigate their application potential for composting in cold climate regions in China. One out of five psychrotrophic cellulose-degrading fungal isolates was identified as a novel fungal species, Aureobasidium paleasum sp. nov., with a strong straw degradation potential. Enzyme activity assays and FITR spectroscopy revealed high cellulolytic activities of this psychrotrophic fungus at lower temperatures, with high thermal adaptability from 5 °C to 50 °C (optimum at 10 °C). A. paleasum efficiently decomposed rice straws and cellulose at 10 °C compared to the common cellulose-degrading fungus Penicillium oxalicum. In comparison to P. oxalicum, A. paleasum shortened the thermophilic stage, enhanced compost maturity and improved compost quality. Our work suggests that the psychrotrophic fungus A. paleasum is efficient for rice straw degradation and composting at low temperatures, highlighting its application potential for composting in colder regions.


Assuntos
Compostagem , Oryza , China , Fungos , Penicillium , Solo , Temperatura
14.
Front Microbiol ; 12: 621126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828537

RESUMO

Composting is an environmentally friendly way to turn plant and animal wastes into organic fertilizers. However, it is unclear to what extent the source of animal waste products (such as manure) affects the physicochemical and microbiological properties of compost. Here, we experimentally tested how the type of livestock manure of herbivores (sheep and cattle) and omnivores (pig and chicken) influences the bacterial and fungal communities and physicochemical properties of compost. Higher pH, NO3-N, Total carbon (TC) content and C/N were found in sheep and cattle manure composts, while higher EC, NH4-N, Total nitrogen (TN) and total phosphorus (TP) content were measured in pig and chicken manure composts. Paired clustering between herbivore and omnivore manure compost metataxonomy composition was also observed at both initial and final phases of composting. Despite this clear clustering, all communities changed drastically during the composting leading to reduced bacterial and fungal diversity and large shifts in community composition and species dominance. While Proteobacteria and Chloroflexi were the major phyla in sheep and cattle manure composts, Firmicutes dominated in pig and chicken manure composts. Together, our results indicate that feeding habits of livestock can determine the biochemical and biological properties of manures, having predictable effects on microbial community composition and assembly during composting. Manure metataxonomy profiles could thus potentially be used to steer and manage composting processes.

15.
Oncol Rep ; 45(2): 787-788, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416110

RESUMO

Following the publication of the above paper, an interested reader drew to our attention apparent anomalies associated with Figs. 2, 3 and 4; essentially, these three figures contained panels exhibiting overlapping data, such that data purportedly relating to different experiments were apparently drawn from the same original sources. [Specifically, the Ski, +TGF­ß1 data panel in Fig. 2B, the Mock, +TGF­ß1 data panel in Fig. 3A, and the +TGF­ß1, +SIS3 data panel in Fig. 4B in the original figures were chosen incorrectly.] Upon investigating this matter with the authors, the authors have realized that they made errors in the compilation of the affected figures. The errors were made inadvertently, and the authors have been able to identify the correct data for each of the figures concerned. The corrected versions of these figures are shown opposite and on the next page. Note that these errors did not affect the overall conclusions reported in the study. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum; furthermore, the authors apologize for any inconvenience caused to the readership of the Journal. [the original article was published in Oncology Reports 34: 87-94, 2015; DOI: 10.3892/or.2015.3961].

16.
Biophys Rep ; 7(4): 253-266, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37287757

RESUMO

Biological super-resolution microscopy is a new generation of imaging techniques that overcome the ~200 nm diffraction limit of conventional light microscopy in spatial resolution. By providing novel spatial or spatiotemporal information on biological processes at nanometer resolution with molecular specificity, it plays an increasingly important role in biomedical sciences. However, its technical constraints also require trade-offs to balance its spatial resolution, temporal resolution, and light exposure of samples. Recently, deep learning has achieved breakthrough performance in many image processing and computer vision tasks. It has also shown great promise in pushing the performance envelope of biological super-resolution microscopy. In this brief review, we survey recent advances in using deep learning to enhance the performance of biological super-resolution microscopy, focusing primarily on computational reconstruction of super-resolution images. Related key technical challenges are discussed. Despite the challenges, deep learning is expected to play an important role in the development of biological super-resolution microscopy. We conclude with an outlook into the future of this new research area.

17.
mSystems ; 5(3)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606030

RESUMO

Interactions between plant pathogens and root-associated microbes play an important role in determining disease outcomes. While several studies have suggested that steering these interactions may improve plant health, such approaches have remained challenging in practice. Because of low iron availability in most soils, competition for iron via secreted siderophore molecules might influence microbial interaction outcomes. Here, we tested if bacterial interactions mediated by iron-scavenging siderophores can be used to predict the disease suppressiveness of microbial consortia against soilborne Ralstonia solanacearum, a bacterial pathogen in the tomato rhizosphere. Iron availability significantly affected the interactions within inoculated consortia and between the consortia and the pathogen. We observed contrasting effects of siderophores and other nonsiderophore metabolites on the pathogen growth, while the siderophore effects were relatively much stronger. Specifically, disease incidence was reduced in vivo when the inoculated consortia produced siderophores that the pathogen could not use for its own growth. Employing siderophore-mediated interactions to engineer functionally robust microbial inoculants shows promise in protecting plants from soilborne pathogens.IMPORTANCE Soil-borne pathogens cause high losses in crop yields globally. The development of environmentally friendly approaches is urgently needed, but is often constrained by complex interactions between root-associated microbes and pathogens. Here, we demonstrate that the interactions within microbial consortia mediated by iron-scavenging siderophores play an important role in reducing pathogen infection and enhancing plant health. This study provides a promising and novel research direction for dealing with a wide range of microbial infections through iron exploitation, which is important for the colonization and infection of both plant and human hosts by pathogens.

18.
Nat Microbiol ; 5(8): 1002-1010, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32393858

RESUMO

Plant pathogenic bacteria cause high crop and economic losses to human societies1-3. Infections by such pathogens are challenging to control as they often arise through complex interactions between plants, pathogens and the plant microbiome4,5. Experimental studies of this natural ecosystem at the microbiome-wide scale are rare, and consequently we have a poor understanding of how the taxonomic and functional microbiome composition and the resulting ecological interactions affect pathogen growth and disease outbreak. Here, we combine DNA-based soil microbiome analysis with in vitro and in planta bioassays to show that competition for iron via secreted siderophore molecules is a good predictor of microbe-pathogen interactions and plant protection. We examined the ability of 2,150 individual bacterial members of 80 rhizosphere microbiomes, covering all major phylogenetic lineages, to suppress the bacterium Ralstonia solanacearum, a global phytopathogen capable of infecting various crops6,7. We found that secreted siderophores altered microbiome-pathogen interactions from complete pathogen suppression to strong facilitation. Rhizosphere microbiome members with growth-inhibitory siderophores could often suppress the pathogen in vitro as well as in natural and greenhouse soils, and protect tomato plants from infection. Conversely, rhizosphere microbiome members with growth-promotive siderophores were often inferior in competition and facilitated plant infection by the pathogen. Because siderophores are a chemically diverse group of molecules, with each siderophore type relying on a compatible receptor for iron uptake8-12, our results suggest that pathogen-suppressive microbiome members produce siderophores that the pathogen cannot use. Our study establishes a causal mechanistic link between microbiome-level competition for iron and plant protection and opens promising avenues to use siderophore-mediated interactions as a tool for microbiome engineering and pathogen control.


Assuntos
Ferro/metabolismo , Microbiota , Doenças das Plantas/microbiologia , Rizosfera , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Interações Hospedeiro-Patógeno , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Filogenia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Ralstonia solanacearum/isolamento & purificação , Ralstonia solanacearum/metabolismo , Análise de Sequência de DNA , Sideróforos , Solo/química , Microbiologia do Solo
19.
Proc Biol Sci ; 285(1893): 20182035, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963908

RESUMO

Diversity-invasion resistance relationships are often variable and sensitive to environmental conditions such as resource availability. Resource stoichiometry, the relative concentration of different elements in the environment, has been shown to have strong effects on the physiology and interactions between different species. Yet, its role for diversity-invasion resistance relationships is still poorly understood. Here, we explored how the ratio of nitrogen (N) and phosphorus affects the productivity and invasion resistance of constructed microbial communities by a plant pathogenic bacterium, Ralstonia solanacearum. We found that resource stoichiometry and species identity effects affected the invasion resistance of communities. Both high N concentration and resident community diversity constrained invasions, and two resident species, in particular, had strong negative effects on the relative density of the invader and the resident community productivity. While resource stoichiometry did not affect the mean productivity of the resident community, it favoured the growth of two species that strongly constrained invasions turning the slope of productivity-invasion resistance relationship more negative. Together our findings suggest that alterations in resource stoichiometry can change the community resistance to invasions by having disproportionate effects on species growth, potentially explaining changes in microbial community composition under eutrophication.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Ralstonia solanacearum/fisiologia , Bactérias/classificação , Espécies Introduzidas , Dinâmica Populacional
20.
J Appl Ecol ; 54(5): 1440-1448, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29081539

RESUMO

Microbe-based biocontrol applications hold the potential to become an efficient way to control plant pathogen disease outbreaks in the future. However, their efficiency is still very variable, which could be due to their sensitivity to the abiotic environmental conditions.Here, we assessed how environmental temperature variation correlates with ability of Ralstonia pickettii, an endophytic bacterial biocontrol agent, to suppress the Ralstonia solanacearum pathogen during different tomato crop seasons in China.We found that suppression of the pathogen was highest when the seasonal mean temperatures were around 20 °C and rapidly decreased with increasing mean crop season temperatures. Interestingly, low levels of disease incidence did not correlate with low pathogen or high biocontrol agent absolute densities. Instead, the biocontrol to pathogen density ratio was a more important predictor of disease incidence levels between different crop seasons. To understand this mechanistically, we measured the growth and strength of competition between the biocontrol agent and the pathogen over a naturally occurring temperature gradient in vitro. We found that the biocontrol strain grew relatively faster at low temperature ranges, and the pathogen at high temperature ranges, and that similar to field experiments, pathogen suppression peaked at 20 °C.Together, our results suggest that temperature-mediated changes in the strength of bacterial competition could potentially explain the variable R. solanacearum biocontrol outcomes between different crop seasons in China. Synthesis and applications. Our results suggest that abiotic environmental conditions, such as temperature, can affect the efficacy of biocontrol applications. Thus, in order to develop more consistent biocontrol applications in the future, we might need to find and isolate bacterial strains that can retain their functionality regardless of the changing environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA