Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Heliyon ; 10(9): e30901, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774103

RESUMO

Recent advances have revealed that the role of the immune system is prominent in the antitumor response. In the present study, it is aimed to provide an expression profile of tumor-infiltrating lymphocytes (TILs), including mature B cells, plasma cells, and their clinical relevance in neuroblastoma. The expression of CD20 and CD138 was analyzed in the Cangelosi786 dataset (n = 769) as a training dataset and in our cohort (n = 120) as a validation cohort. CD20 high expression was positively associated with favorable overall survival (OS) and event-free survival (EFS) (OS: P < 0.001; EFS: P < 0.001) in the training dataset, whereas CD138 high expression was associated with poor OS and EFS (OS: P < 0.001; EFS: P < 0.001) in both the training and validation datasets. Accordingly, a combined pattern of CD20 and CD138 expression was developed, whereby neuroblastoma patients with CD20highCD138low expression had a consistently favorable OS and EFS compared with those with CD20lowCD138high expression in both the training and validation cohorts (P < 0.0001 and P < 0.01, respectively). Examination of potential molecular functions revealed that signaling pathways, including cytokine‒cytokine receptor interactions, chemokine, and the NF-kappa B signaling pathways, were involved. Differentially expressed genes, such as BMP7, IL7R, BIRC3, CCR7, CXCR5, CCL21, and CCL19, predominantly play important roles in predicting the survival of neuroblastoma patients. Our study proposes that a new combination of CD20 and CD138 signatures is associated with neuroblastoma patient survival. The related signaling pathways reflect the close associations among the number of TILs, cytokine abundance and patient outcomes and provide therapeutic insights into neuroblastoma.

2.
Pharmaceutics ; 16(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675199

RESUMO

The improvement of the capability of poly(N-isopropylacrylamide) (PNIPAAm) hydrogel coating in cell adhesion and detachment is critical to efficiently prepare cell sheets applied in cellular therapies and tissue engineering. To enhance cell response on the surface, the amine group-modified PNIPAAm (PNIPAAm-APTES) nanohydrogels were synthesized and deposited spontaneously on tannic acid (TA)-modified polyethylene (PE) plates. Subsequently, TA was introduced onto PNIPAAm-APTES nanohydrogels to fabricate coatings composed of TA-modified PNIPAAm-APTES (PNIPAAm-APTES-TA). Characterization techniques, including TEM, SEM, XPS, and UV-Vis spectroscopy, confirmed the effective deposition of hydrogels of PNIPAAm as well as the morphologies, content of chemical bonding-TA, and stability of various coatings. Importantly, the porous hydrogel coatings exhibited superhydrophilicity at 20 °C and thermo-responsive behavior. The fluorescence measurement demonstrated that the coating's stability effectively regulated protein behavior, influencing cell response. Notably, cell response tests revealed that even without precise control over the chain length/thickness of PNIPAAm during synthesis, the coatings enhanced cell adhesion and detachment, facilitating efficient cell culture. This work represented a novel and facile approach to preparing bioactive PNIPAAm for cell culture.

3.
J Sci Food Agric ; 104(2): 686-697, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37654243

RESUMO

BACKGROUND: Ethanol and osmotic stresses are the major limiting factors for brewing strong beer with high-gravity wort. Breeding of yeast strains with high osmotic and ethanol tolerance and studying very-high-gravity (VHG) brewing technology is of great significance for brewing strong beer. RESULTS: This study used an optimized microbial microdroplet culture (MMC) system for adaptive laboratory evolution (ALE) of Saccharomyces cerevisiae YN81 to improve its tolerance to osmotic and ethanol stress. Meanwhile, we investigated the VHG and VHG with added ethanol (VHGAE) brewing processes for the evolved mutants in brewing strong beer. The results showed that three evolved mutants were obtained; among them, the growth performance of YN81mc-8.3 under 300, 340, 380, 420 and 460 g L-1 sucrose stresses was greater than that of the other strains. The ethanol tolerance of YN81mc-8.3 was 12%, which was 20% higher than that of YN81. During strong-beer brewing in a 100 L cylindrical cone-bottom tank, the sugar utilization and ethanol yield of YN81mc-8.3 outperformed those of YN81 in both the VHG and VHGAE brewing processes. Measurement of the diacetyl concentration showed that YN81mc-8.3 had a stronger diacetyl reduction ability; in particular, the real degree of fermentation of beers brewed by YN81mc-8.3 in VHG and VHGAE brewing processes was 75.35% and 66.71%, respectively - higher than those of the two samples brewed by YN81. Meanwhile, the visual, olfactive and gustative properties of the strong beer produced by YN81mc-8.3 were better than those of the other beers. CONCLUSION: In this study, the mutant YN81mc-8.3 and the VHGAE brewing process were optimal and represented a better alternative strong-beer brewing process. © 2023 Society of Chemical Industry.


Assuntos
Diacetil , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Melhoramento Vegetal , Fermentação , Etanol , Cerveja
4.
Front Microbiol ; 14: 1250151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075875

RESUMO

Quorum sensing (QS) is one of the most well-studied cell-to-cell communication mechanisms in microorganisms. This intercellular communication process in Saccharomyces cerevisiae began to attract more and more attention for researchers since 2006, and phenylethanol, tryptophol, and tyrosol have been proven to be the main quorum sensing molecules (QSMs) of S. cerevisiae. In this paper, the research history and hotspots of QS in S. cerevisiae are reviewed, in particular, the QS system of S. cerevisiae is introduced from the aspects of regulation mechanism of QSMs synthesis, influencing factors of QSMs production, and response mechanism of QSMs. Finally, the employment of QS in adaptation to stress, fermentation products increasing, and food preservation in S. cerevisiae was reviewed. This review will be useful for investigating the microbial interactions of S. cerevisiae, will be helpful for the fermentation process in which yeast participates, and will provide an important reference for future research on S. cerevisiae QS.

5.
J Gastrointest Oncol ; 14(3): 1496-1503, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37435202

RESUMO

Background: Cholangiocarcinoma (CCA) is a common malignant biliary tract tumor in clinical practice. The detection rate of multi-slice spiral computed tomography (MSCT) with a diameter of 10 mm is low, and it is easy to be misdiagnosed and missed. In addition, patients who are allergic to iodized contrast media are not eligible for MSCT screening. However, magnetic resonance cholangiopancreatography (MRCP) is non-invasive, does not require contrast injection, scans quickly, and is simple to perform. MRCP has good development rate and the ability to recognize human pancreas and biliary tract. MRCP is also non-invasive, does not require contrast injection, has fast scanning speed, and is easy to operate. In addition, MRCP has a good development rate and the ability to recognize human pancreas and biliary tract. Therefore, this study sought to analyze the accuracy of MRCP and MSCT in the diagnosis of CCA. Methods: In this paper, 186 patients with highly suspected CCA admitted to the Second Affiliated Hospital of Soochow University from March 2020 to May 2022 were selected for MSCT and MRCP examination. We compared the diagnostic accuracy, sensitivity and specificity of MSCT and MRCP with pathological diagnosis and the detection rate of lesions with different diameters between MSCT and MRCP. Finally, the imaging features of MSCT and MRCP of CCA were analyzed. Results: The results showed that (I) the diagnostic accuracy (95.70%), sensitivity (95.12%), and specificity (96.15%) of MRCP were higher than those of MSCT (69.89%, 60.98%, and 76.92%, respectively; P<0.05); (II) MSCT and MRCP were basically consistent with the datum (Kappa value =0.527, Kappa value =0.767, respectively); (III) the detection rate of lesions <0.5 cm in diameter of MRCP (32.05%) was higher than that of MSCT (14.00%; P<0.05); and (IV) the detection rates of lesions 0.5-1.0 cm (38.46%) and >1.0 cm (29.49%) in diameter of MRCP were lower those of MSCT (50.00%, and 36.00%, respectively; P>0.05). Conclusions: MRCP can provide relevant imaging feature information, improve the accuracy, sensitivity and specificity of the diagnosis of bile duct carcinoma, and has a high detection rate for small diameter lesions, which has good reference, promotion and reference value.

6.
J Cell Mol Med ; 27(15): 2239-2248, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347215

RESUMO

Common genetic mutations are absent in neuroblastoma, one of the most common childhood tumours. As a demethylase of 5-methylcytosine (m5C) modification, TET1 plays an important role in tumourigenesis and differentiation. However, the association between TET1 gene polymorphisms and susceptibility to neuroblastoma has not been reported. Three TET1 gene polymorphisms (rs16925541 A > G, rs3998860 G > A and rs12781492 A > C) in 402 Chinese patients with neuroblastoma and 473 cancer-free controls were assessed using TaqMan. Multivariate logistic regression analysis was used to evaluate the association between TET1 gene polymorphisms and susceptibility to neuroblastoma. The GTEx database was used to analyse the impact of these polymorphisms on peripheral gene expression. The relationship between gene expression and prognosis was analysed using Kaplan-Meier analysis with the R2 platform. We found that both rs3998860 G > A and rs12781492 A > C were significantly associated with increased neuroblastoma risk. Stratified analysis further showed that rs3998860 G > A and rs12781492 A > C significantly increased neuroblastoma risk in certain subgroups. In the combined risk genotype model, 1-3 risk genotypes significantly increased risk of neuroblastoma compared with the 0 risk genotype. rs3998860 G > A and rs12781492 A > C were significantly associated with increased STOX1 mRNA expression in adrenal and whole blood, and high expression of STOX1 mRNA in adrenal and whole blood was significantly associated with worse prognosis. In summary, TET1 gene polymorphisms are significantly associated with increased neuroblastoma risk; further research is required for the potential mechanism and therapeutic prospects in neuroblastoma.


Assuntos
Predisposição Genética para Doença , Oxigenases de Função Mista , Neuroblastoma , Proteínas Proto-Oncogênicas , Criança , Humanos , Proteínas de Transporte/genética , Estudos de Casos e Controles , População do Leste Asiático , Genótipo , Oxigenases de Função Mista/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética
7.
Research (Wash D C) ; 6: 0033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040518

RESUMO

The recurrence and metastasis of children with mediastinal neuroblastoma (NB) are also occurred after surgery, chemotherapy, or radiotherapy. Strategies targeting the tumor microenvironment have been reported to improve survival; however, thorough investigations of monocytes and tumor-associated macrophages (Mϕs) with specialized functions in NB are still lacking. Our data first demonstrated polypyrimidine tract binding protein 2 (PTBP2) as a possible identifier in patients with mediastinal NB screened by proteomic profiling and that PTBP2 predicted good outcomes. Functional studies revealed that PTBP2 in NB cells induced the chemotactic activity and repolarization of tumor-associated monocytes and Mϕs, which, in turn, inhibited NB growth and dissemination. Mechanistically, PTBP2 prevents interferon regulatory factor 9 alternative splicing and upregulates signal transducers and activators of transcription 1 to stimulate C-C motif chemokine ligand 5 (CCL5) and interferon-stimulated gene factor-dependent type I interferon secretion, to induce monocyte/Mϕs chemotaxis, and to sustain monocytes in a proinflammatory phenotype. Our study defined a critical event of PTBP2-induced monocytes/Mϕs in NB progression and revealed that RNA splicing occurred by PTBP2 benefits immune compartmentalization between NB cells and monocytes. This work revealed the pathological and biological role of PTBP2 in NB development and indicates that PTBP2-induced RNA splicing benefits immune compartmentalization and predicted a favorable prognosis in mediastinal NB.

8.
Front Nutr ; 10: 1091067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925958

RESUMO

Diet dictates nutrient availability in the tumor microenvironment, thus affecting tumor metabolic activity and growth. Intrinsically, tumors develop unique metabolic features and are sensitive to environmental nutrient concentrations. Tumor-driven nutrient dependencies provide opportunities to control tumor growth by nutritional restriction or supplementation. This review summarized the existing data on nutrition and pediatric cancers after systematically searching articles up to 2023 from four databases (PubMed, Web of Science, Scopus, and Ovid MEDLINE). Epidemiological studies linked malnutrition with advanced disease stages and poor clinical outcomes in pediatric cancer patients. Experimental studies identified several nutrient dependencies (i.e., amino acids, lipids, vitamins, etc.) in major pediatric cancer types. Dietary modifications such as calorie restriction, ketogenic diet, and nutrient restriction/supplementation supported pediatric cancer treatment, but studies remain limited. Future research should expand epidemiological studies through data sharing and multi-institutional collaborations and continue to discover critical and novel nutrient dependencies to find optimal nutritional approaches for pediatric cancer patients.

9.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36190261

RESUMO

Dietary fiber, polysaccharides and phenols are the representative functional components in wheat bran, which have important nutritional properties and pharmacological effects. However, the most functional components in wheat bran exist in bound form with low bioaccessibility. This paper reviews these functional components, analyzes modification methods, and focuses on novel solid-state fermentation (SSF) strategies in the release of functional components. Mining efficient microbial resources from traditional fermented foods, exploring the law of material exchange between cell populations, and building a stable self-regulation co-culture system are expected to strengthen the SSF process. In addition, emerging biotechnology such as synthetic biology and genome editing are used to transform the mixed fermentation system. Furthermore, combined with the emerging physical-field pretreatment coupled with SSF strategies applied to the modification of wheat bran, which provides a theoretical basis for the high-value utilization of wheat bran and the development of related functional foods and drugs.

10.
BMC Biotechnol ; 22(1): 30, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303174

RESUMO

BACKGROUND: An important conceptual advance in health and the environment has been recognized that enzymes play a key role in the green processing industries. Of particular interest, chitosanase is beneficial for recycling the chitosan resource and producing chitosan oligosaccharides. Also, chitosan gene expression and molecular characterization will promote understanding of the biological function of bacterial chitosanase as well as explore chitosanase for utilizing chitosan resources. RESULTS: A chitosanase-producing bacterium TY24 was isolated and identified as Bacillus cereus. Moreover, the chitosanase gene was cloned and expressed in Escherichia coli. Sequence analysis reveals that the recombinant chitosanase (CHOE) belongs to the glycoside hydrolases 8 family. The purified CHOE has a molecular weight of about 48 kDa and the specific activity of 1150 U/mg. The optimal pH and temperature of CHOE were 5.5 and 65 °C, respectively. The enzyme was observed stable at the pH range of 4.5-7.5 and the temperature range of 30-65 °C. Especially, the half-life of CHOE at 65 °C was 161 min. Additionally, the activity of CHOE was remarkably enhanced in the presence of Mn2+, Cu2+, Mg2+ and K+, beside Ca2+ at 5 mM. Especially, the activity of CHOE was enhanced to more than 120% in the presence of 1% of various surfactants. CHOE exhibited the highest substrate specificity toward colloid chitosan. CONCLUSION: A bacterial chitosanase was cloned from B. cereus and successfully expressed in E. coli (BL21) DE3. The recombinant enzyme displayed good stability under acid pH and high-temperature conditions.


Assuntos
Bacillus cereus , Quitosana , Bacillus cereus/genética , Bacillus cereus/metabolismo , Quitosana/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicosídeo Hidrolases/química , Clonagem Molecular , Concentração de Íons de Hidrogênio
11.
BMC Biotechnol ; 22(1): 26, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36076195

RESUMO

BACKGROUND: With the growing concern for the environment, there are trends that bio-utilization of keratinous waste by keratinases could ease the heavy burden of keratinous waste from the poultry processing and leather industry. Especially surfactant-stable keratinases are beneficial for the detergent industry. Therefore, the production of keratinase by Bacillus cereus YQ15 was improved; the characterization and use of keratinase in detergent were also studied. RESULTS: A novel alkaline keratinase-producing bacterium YQ15 was isolated from feather keratin-rich soil and was identified as Bacillus cereus. Based on the improvement of medium components and culture conditions, the maximum keratinase activity (925 U/mL) was obtained after 36 h of cultivation under conditions of 35 °C and 160 rpm. Moreover, it was observed that the optimal reacting temperature and pH of the keratinase are 60 °C and 10.0, respectively; the activity was severely inhibited by PMSF and EDTA. On the contrary, the keratinase showed remarkable stability in the existence of the various surfactants, including SDS, Tween 20, Tween 60, Tween 80, and Triton X-100. Especially, 5% of Tween 20 and Tween 60 increased the activity by 100% and 60%, respectively. Furtherly, the keratinase revealed high efficiency in removing blood stains. CONCLUSION: The excellent compatibility with commercial detergents and the high washing efficiency of removing blood stains suggested its suitability for potential application as a bio-detergent additive.


Assuntos
Bacillus cereus , Detergentes , Animais , Bacillus cereus/metabolismo , Detergentes/química , Estabilidade Enzimática , Plumas/metabolismo , Concentração de Íons de Hidrogênio , Queratinas/metabolismo , Peptídeo Hidrolases/metabolismo , Polissorbatos , Tensoativos , Temperatura
12.
Front Microbiol ; 13: 976321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090078

RESUMO

Ethanol stress is one of the major limiting factors for high-gravity brewing. Breeding of yeast strain with high ethanol tolerance, and revealing the ethanol tolerance mechanism of Saccharomyces cerevisiae is of great significance to the production of high-gravity beer. In this study, the mutant YN81 was obtained by ultraviolet-diethyl sulfate (UV-DES) cooperative mutagenesis from parental strain CS31 used in high-gravity craft beer brewing. The ethanol tolerance experiment results showed that cell growth and viability of YN81 were significantly greater than that of CS31 under ethanol stress. The ethanol tolerance mechanisms of YN81 were studied through observation of cell morphology, intracellular trehalose content, and transcriptomic analysis. Results from scanning electron microscope (SEM) showed alcohol toxicity caused significant changes in the cell morphology of CS31, while the cell morphology of YN81 changed slightly, indicating the cell morphology of CS31 got worse (the formation of hole and cell wrinkle). In addition, compared with ethanol-free stress, the trehalose content of YN81 and CS31 increased dramatically under ethanol stress, but there was no significant difference between YN81 and CS31, whether with or without ethanol stress. GO functional annotation analysis showed that under alcohol stress, the number of membrane-associated genes in YN81 was higher than that without alcohol stress, as well as CS31, while membrane-associated genes in YN81 were expressed more than CS31 under alcohol stress. KEGG functional enrichment analysis showed unsaturated fatty acid synthesis pathways and amino acid metabolic pathways were involved in ethanol tolerance of YN81. The mutant YN81 and its ethanol tolerance mechanism provide an optimal strain and theoretical basis for high-gravity craft beer brewing.

13.
Front Surg ; 9: 932721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846968

RESUMO

Purpose: Indocyanine green (ICG) fluorescence imaging is becoming increasingly popular in adult oncologic surgery, but remains relatively uncommon in pediatric oncologic surgery. Herein, we report our experience with the use of ICG fluorescence imaging in the resection of hepatoblastoma (HB). Patients and Methods: Hepatoblastoma patients who underwent liver resection with ICG fluorescence imaging between January 2020 and March 2021 were included in this study. Patients' demographic data, clinical information, and detailed information of the use of ICG fluorescence imaging were retrospectively reviewed. Results: Sixteen HB patients underwent ICG fluorescence imaging-guided liver resection. There were 11 males and 5 females, age ranged from 8 to 134 months. The initial alpha-fetoprotein ranged from 436 to 528,390 ng/ml. There were one pre-treatment extent of tumor stage I, nine stage II, four stage III, and two stage IV. Three patients underwent up-front hepatectomy, 13 patients received 2-8 cycles of platinum-based neoadjuvant chemotherapy and underwent delayed hepatectomy. ICG (0.5 mg/kg) was given intravenously 48-72 h prior to surgery. The operative time ranged from 180 to 400 min. All patients achieved negative surgical margins. In two patients, ICG identify additional lesions which were not detected in preoperative imaging. Conclusion: ICG fluorescence imaging is useful in the resection of HB and may detect small lesions not shown in preoperative imaging.

14.
iScience ; 25(7): 104655, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35811845

RESUMO

Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children. We found that TTF1, TrkA, and miR-204 were lowly expressed, whereas TrkB was highly expressed in undifferentiated NB tissues. Meanwhile, TTF1 expression correlated positively with TrkA and miR-204 expression but negatively with TrkB expression. The TTF1 promoter was hypermethylated in undifferentiated NB tissues and SK-N-BE cells, leading to TTF1 downregulation. We also identified miR-204, which directly targets TrkB, as a transcriptional target of TTF1. Functionally, TTF1 suppressed proliferation, migration, and invasion of NB cells, whereas induced cell cycle arrest, apoptosis, and autophagy of NB cells by regulating TrkA and the miR-204-TrkB axis. Furthermore, TTF1 suppressed tumor growth and promoted neurogenic differentiation in a NB xenograft mouse model. Our study demonstrates that TTF1 reduces tumor growth and induces neurogenic differentiation in NB by directly targeting TrkA and the miR-204/TrkB axis.

15.
Cell Death Dis ; 13(7): 597, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821006

RESUMO

Increasing studies have pointed out that small nucleolar RNAs (snoRNAs) and their host genes (SNHGs) have multi-functional roles in cancer progression. Bioinformatics analysis revealed the importance of snoRNA host gene 25 (SNHG25) in neuroblastoma (NB). Hence, we further explored the function and molecular mechanism of SNHG25 in NB. Our study revealed that SNHG25 expression was upregulated in NB cells. Through loss-of-function assays, we discovered that silencing of SNHG25 suppressed NB cell proliferation, invasion, and migration. Moreover, we found that SNHG25 positively regulated snoRNA small nucleolar RNA, H/ACA box 50 C (SNORA50C) in NB cells, and SNORA50C depletion had the same function as SNHG25 silencing in NB cells. Moreover, we proved that SNHG25 recruited dyskerin pseudouridine synthase 1 (DKC1) to facilitate SNORA50C accumulation and associated small nucleolar ribonucleoprotein (snoRNP) assembly. In addition, it was manifested that SNHG25 relied on SNORA50C to inhibit ubiquitination of histone deacetylase 1 (HDAC1), thereby elevating HDAC1 expression in NB cells. Further, HDAC1 was proven to be a tumor-facilitator in NB, and SNORA50C contributed to NB cell growth and migration through the HDAC1-mediated pathway. In vivo xenograft experiments further supported that SNHG25 promoted NB progression through SNORA50C/HDAC1 pathway. Our study might provide a novel sight for NB treatment.


Assuntos
Histona Desacetilase 1 , Neuroblastoma , RNA Nucleolar Pequeno , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/fisiologia , Histona Desacetilase 1/metabolismo , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
16.
Front Microbiol ; 13: 793122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547144

RESUMO

The highly effective phosphate-solubilizing microorganisms are significant for making full use of the potential phosphorus resources in the soil and alleviating the shortage of phosphorus resources. In this study, a phosphate-solubilizing fungus was isolated from wheat and cotton rhizosphere soils in the lower reaches of the Yellow River in China and was identified as Penicillium oxalicum by morphological and ITS sequencing analysis. In order to obtain a fungus with more efficient phosphorus solubilization ability, we tested three positive mutant strains (P1, P2, and P3) and three negative mutant strains (N1, N2, and N3) through low-energy nitrogen ion implantation mutagenesis. Compared with the parental strain, the phosphate-solubilizing capacity of P1, P2, and P3 was enhanced by 56.88%, 42.26%, and 32.15%, respectively, and that of N1, N2, and N3 was weakened by 47.53%, 35.27%, and 30.86%, respectively. Compared with the parental strain, the total amount of organic acids secreted significantly increased in the three positive mutant strains and decreased in the negative mutant strains; the pH of culture medium was significantly lower in the positive mutant strains and higher in the negative mutant strains. The capacity of phosphate-solubilizing fungus to secrete organic acids and reduce the growth-medium pH was closely related to its phosphate-solubilizing ability. The changes in the amount of organic acids secreted by mutants can alter their acidification and phosphate-solubilizing capacity. In conclusion, this study offers a theoretical basis and strain materials for the exploration and application of phosphate-solubilizing fungi.

17.
J Pediatr Surg ; 57(4): 700-710, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34049689

RESUMO

PURPOSE: Hepatoblastoma (HB) and hepatocellular carcinoma (HCC) are the most common primary malignant tumors of childhood. Intraoperative indocyanine green (ICG) administration with near-infrared imaging (NIR) has emerged as a surgical technology that can be used to assist with localization of pulmonary metastases secondary to HB; however, there has been limited application as an adjunct for resection of the primary liver tumor and assessment of extrahepatic disease. METHODS: We present 14 patients treated for HB, HCC, and malignant rhabdoid tumor at our institution with the use of intraoperative NIR-ICG guidance. All patients were treated with 0.2-0.75 mg/kg IV ICG, 48-96 h prior to surgery. Intraoperative NIR-ICG guided imaging was performed with several commercial devices. RESULTS: Intraoperative NIR-ICG guidance allowed pulmonary metastasectomy in five patients using thoracoscopy or thoracotomy allowing for visualization of multiple nodules not seen on preoperative imaging most of which were positive for malignancy. NIR-ICG guidance allowed for assessment of extrahepatic extension in three patients; an HCC patient with extrahepatic lymph node extension of disease, an HB patient with extrapulmonary thoracic recurrence in the diaphragm and chest wall, and a patient with tumor rupture at diagnosis with peritoneal nodules at the time of surgery. This technique was used to guide partial hepatectomy in 11 patients for which the technique enabled successful identification of tumor and tumor margins. Three patients had nonspecific staining of the liver secondary to decreased timing from ICG injection to surgery or biliary obstruction. NIR-ICG enabled resection of satellite HB lesions in three multifocal patients and confirmed a benign satellite lesion in two additional patients. CONCLUSIONS: Intraoperative use of NIR-ICG imaging during partial hepatectomy enabled enhanced identification and guidance for surgical resection of extrahepatic disease and multifocal liver tumors for the treatment of children with primary liver cancer.


Assuntos
Carcinoma Hepatocelular , Hepatoblastoma , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/cirurgia , Criança , Hepatectomia/métodos , Hepatoblastoma/diagnóstico por imagem , Hepatoblastoma/cirurgia , Humanos , Verde de Indocianina , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Imagem Óptica/métodos
18.
Front Med (Lausanne) ; 8: 797195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970571

RESUMO

Neuroblastoma is a primary malignancy mainly occurring in children. We have reported that polymorphisms of several N6-methyladenosine (m6A) RNA modification-related genes contributed to neuroblastoma risk in previous studies. YTHDF2, a "reader" of RNA m6A modification, is involved in cancer progression. Here, we estimated the association between a YTHDF2 gene rs3738067 A>G polymorphism and neuroblastoma susceptibility in 898 neuroblastoma patients and 1,734 healthy individuals from China. We found that the rs3738067 A>G could decrease neuroblastoma risk [AG vs. AA: adjusted odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.64-0.90, P = 0.002; AG/GG vs. AA: adjusted OR = 0.81, 95% CI = 0.69-0.95, P = 0.011). Besides, the rs3738067 AG/GG genotype was related to reduced neuroblastoma risk in the following subgroups: children aged 18 months and under, boys, patients with tumors originating from retroperitoneal, patients at clinical stage IV, and cases at clinical stages III plus IV. Importantly, false-positive report probability analysis proved our significant results worthy of close attention of. The expression quantitative trait locus analysis results revealed that the rs3738067 was associated with the expression of YTHDF2.

19.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4429-4438, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951284

RESUMO

The high-efficiency phosphate solubilizing mutants of Penicillium oxalicum YTY were screened by mutagenesis of ion beam combined with UV. We analyzed the changes and correlation of phosphate solubilizing ability, pH, and organic acid for YTY and its mutants, and examined the phosphate solubilizing mechanism of P. oxalicum YTY. The results showed that five high-efficiency mutants, P9-8, P9-9, P15-4, P15-6, and P15-7 were screened, and that the phosphate solubili-zing ability of mutants was increased by more than 60% compared with YTY. In the process of pho-sphorus solubilization, both phosphorus solubilizing ability and rate of mutants were higher than that of YTY, and the mutants pH was significantly lower than YTY. The type and content of organic acids secreted by the mutants showed some variations. All mutants and YTY could secrete lactic acid, acetic acid and oxalic acid, while P9-8 also produced citric acid. The pH and the phosphate solubilizing ability of YTY and its mutants had a significant negative correlation. Phosphate solubilizing ability with organic acid and pH were all significantly correlated for YTY and the mutants, except P15-4. Organic acids and low environmental pH reduced by organic acids were the probable mechanism for P. oxalicum to dissolve phosphorus. Radiation of ion beam combined with UV could change the type and content of organic acids of P. oxalicum YTY, and initiate other H+ releasing pathways to lower pH, and participate phosphorus dissolution. The study provided biological mate-rials and theoretical basis for the research and development of high-efficiency phosphate solubilizing P. oxalicum and understanding the phosphate solubilizing mechanism of P. oxalicum.


Assuntos
Penicillium , Fosfatos , Concentração de Íons de Hidrogênio , Penicillium/genética , Fósforo
20.
J Cell Mol Med ; 25(2): 742-750, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236528

RESUMO

H19 polymorphisms are associated with increased susceptibility to several cancers; however, their role in hepatoblastoma remains unclear. In this study, we investigated the association between three H19 polymorphisms (rs2839698 G>A, rs3024270 C>G, rs217727 G>A) and hepatoblastoma susceptibility in 213 hepatoblastoma patients. The rs2839698 and rs3024270 polymorphisms were associated with significantly increased hepatoblastoma risk, with the GG genotype associated with a higher risk of hepatoblastoma than the CC genotype at the rs3024270 locus. The rs217727 polymorphism was associated with significantly decreased hepatoblastoma risk, with the AG genotype associated with a lower risk of hepatoblastoma than the GG genotype. These findings were confirmed by combined analysis, and stratification analysis revealed that age, gender and clinical stage were associated with increased hepatoblastoma susceptibility. The GGG and AGG haplotypes were significantly associated with increased hepatoblastoma risk compared with the GCA reference (rs2839698, rs3024270, rs217727). The rs2839698 and rs3024270 polymorphisms correlated with decreased MRPL23-AS1 expression, whereas the rs217727 polymorphism was associated with increased MRPL23-AS1 expression. Overall, the H19 rs2839698, rs3024270 and rs217727 polymorphisms were associated with hepatoblastoma susceptibility in a Chinese Han population.


Assuntos
Predisposição Genética para Doença/genética , Hepatoblastoma/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Povo Asiático , Feminino , Haplótipos/genética , Humanos , Masculino , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA