Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Colloid Interface Sci ; 672: 32-42, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38824686

RESUMO

The alkaline solid-state electrolytes have received widespread attention for their good safety and electrochemical stability. However, they still suffer from low conductivity and poor mechanical properties. Herein, we report the synthesis of double-network featured hydroxide-conductive membranes fabricated by polyvinyl alcohol (PVA) and chitosan (CS) as the double-skeletons. Then, we implanted quaternary ammonium salt guar hydroxypropyltrimonium chloride (GG) as the OH- conductor for high-performance electrochemical devices. By virtue of the unique stripe-like structure shared from the double skeleton with a high degree of compatibility and stronger hydrogen bond interactions, the polyvinyl alcohol/chitosan-guar hydroxypropyltrimonium chloride (PCG) solid-state electrolytes achieved optimal thermal stability (> 300 °C), mechanical property (∼ 34.15 MPa), dimensional stability (at any bending angle), and high ionic conductivity (13 mS cm-1) and ion mobility number (tion âˆ¼ 0.90) compared with chitosan-guar hydroxypropyltrimonium chloride (CG) and polyvinyl alcohol-guar hydroxypropyltrimonium chloride (PG) electrolyte membrane. As a proof-of-concept application, the "sandwich"-type zinc-air battery (ZAB) assembled using PCG membrane as the electrolyte realized a high open-circuit voltage (1.39 V) and an excellent power density (128 mW cm-2). Notably, in addition to its long-term cycle life (30 h, 2 mA cm-2) and stable discharge plateau (12 h, 5 mA cm-2), it could even enable a flexible ZAB (F-ZAB) to readily power light-emitting diodes (LED) at any bending angle. These merits afford the PCG membrane a promising electrolyte for improving the performance of solid-state batteries.

2.
Nanomaterials (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392707

RESUMO

Ferromagnetic materials have been attracting great interest in the last two decades due to their application in spintronics devices. One of the hot research areas in magnetism is currently the two-dimensional materials, transition metal dichalcogenides (TMDCs), which have unique physical properties. The origins and mechanisms of transition metal dichalcogenides (TMDCs), especially the correlation between magnetism and defects, have been studied recently. We investigate the changes in magnetic properties with a variation in annealing temperature for the nanoscale compound MoS2. The pristine MoS2 exhibits diamagnetic properties from low-to-room temperature. However, MoS2 compounds annealed at different temperatures showed that the controllable magnetism and the strongest ferromagnetic results were obtained for the 700 °C-annealed sample. These magnetizations are attributed to the unpaired electrons of vacancy defects that are induced by annealing, which are confirmed using Raman spectroscopy and electron paramagnetic resonance spectroscopy (EPR).

3.
Nanomicro Lett ; 16(1): 84, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214765

RESUMO

In this study, precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties, environmental stability, and gas-sensing performance. Utilizing a hybrid method involving high-pressure processing, stirring, and immiscible solutions, sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer. Functionalization control is achieved by defunctionalizing MXene at 650 °C under vacuum and H2 gas in a CVD furnace, followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD. Notably, the introduction of iodine, which has a larger atomic size, lower electronegativity, reduce shielding effect, and lower hydrophilicity (contact angle: 99°), profoundly affecting MXene. It improves the surface area (36.2 cm2 g-1), oxidation stability in aqueous/ambient environments (21 days/80 days), and film conductivity (749 S m-1). Additionally, it significantly enhances the gas-sensing performance, including the sensitivity (0.1119 Ω ppm-1), response (0.2% and 23% to 50 ppb and 200 ppm NO2), and response/recovery times (90/100 s). The reduced shielding effect of the -I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2. This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.

4.
Adv Sci (Weinh) ; 10(16): e2300398, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37068177

RESUMO

Aqueous Zn metal-based batteries have considerable potential as energy storage system; however, their application is extremely limited by dendrite development and poor reversibility. In this study, to overcome both challenges, F-doped carbon nanoparticles (FCNPs) are uniformly constructed on substrates (Ti, Zn, Cu, and steel) by a plasma-assisted surface modification, which endows reversible and uniform deposition of Zn metal. FCNPs with high surface charge density act as nucleation assistors and form numerous homogenous Zn nucleation sites toward Zn 3D growth, which improves Zn plating kinetic and results in uniform Zn deposition. Furthermore, the ZnF2  solid electrolyte interface generated during cycling contributes to rapid mass transfer and enhances Zn reversibility, but also suppresses the side reaction. Accordingly, the half-cell of P-Ti coupled with Zn exhibits an average Coulombic efficiency of 99.47% with 500 cycles. The symmetric cell of the P-Zn anode presents a lifespan of over 1500 h at the current density of 5 mA cm-2 . Notably, the cell works for 100 h at 50 mA cm-2 . It is believed that this ingenious surface modification broadens revolutionary methods for uniform metallic deposition, as well as the dendrite-free rechargeable batteries system.

5.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499352

RESUMO

Three-dimensional (3D) hierarchical microspheres of Bi12O17Cl2 (BOC) were prepared via a facile solvothermal method using a binary solvent for the photocatalytic degradation of Rhodamine-B (RhB) and Bisphenol-A (BPA). Co3O4 nanoparticles (NPs)-decorated BOC (Co3O4/BOC) heterostructures were synthesized to further enhance their photocatalytic performance. The microstructural, morphological, and compositional characterization showed that the BOC microspheres are composed of thin (~20 nm thick) nanosheets with a 3D hierarchical morphology and a high surface area. Compared to the pure BOC photocatalyst, the 20-Co3O4/BOC heterostructure showed enhanced degradation efficiency of RhB (97.4%) and BPA (88.4%). The radical trapping experiments confirmed that superoxide (•O2-) radicals played a primary role in the photocatalytic degradation of RhB and BPA. The enhanced photocatalytic performances of the hierarchical Co3O4/BOC heterostructure are attributable to the synergetic effects of the highly specific surface area, the extension of light absorption to the more visible light region, and the suppression of photoexcited electron-hole recombination. Our developed nanocomposites are beneficial for the construction of other bismuth-based compounds and their heterostructure for use in high-performance photocatalytic applications.


Assuntos
Compostos Benzidrílicos , Fenóis , Rodaminas
6.
Nanomaterials (Basel) ; 12(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234481

RESUMO

MoS2 nanoscrolls that have inner core radii of ∼250 nm are generated from MoS2 monolayers, and the optical and transport band gaps of the nanoscrolls are investigated. Photoluminescence spectroscopy reveals that a MoS2 monolayer, originally a direct gap semiconductor (∼1.85 eV (optical)), changes into an indirect gap semiconductor (∼1.6 eV) upon scrolling. The size of the indirect gap for the MoS2 nanoscroll is larger than that of a MoS2 bilayer (∼1.54 eV), implying a weaker interlayer interaction between concentric layers of the MoS2 nanoscroll compared to Bernal-stacked MoS2 few-layers. Transport measurements on MoS2 nanoscrolls incorporated into ambipolar ionic-liquid-gated transistors yielded a band gap of ∼1.9 eV. The difference between the transport and optical gaps indicates an exciton binding energy of 0.3 eV for the MoS2 nanoscrolls. The rolling up of 2D atomic layers into nanoscrolls introduces a new type of quasi-1D nanostructure and provides another way to modify the band gap of 2D materials.

7.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014638

RESUMO

Mobility spectrum analysis (MSA) is a method that enables the carrier density (and mobility) separation of the majority and minority carriers in multicarrier semiconductors, respectively. In this paper, we use the p-GaAs layer in order to demonstrate that the MSA can perform unique facilities for the defect analysis by using its resolvable features for the carriers. Using two proven methods, we reveal that the defect state can be anticipated at the characteristic temperature Tdeep, in which the ratio (RNn/Nh) that is associated with the density of the minority carrier Nn, to the density of the majority carrier Nh, exceeds 50%. (1) Using a p-GaAs Schottky diode in a reverse bias regime, the position of the deep level transient spectroscopy (DLTS) peak is shown directly as the defect signal. (2) Furthermore, by examining the current-voltage-temperature (I-V-T) characteristics in the forward bias regime, this peak position has been indirectly revealed as the generation-recombination center. The DLTS signals are dominant around the Tdeep, according to the window rate, and it has been shown that the peak variation range is consistent with the temperature range of the temperature-dependent generation-recombination peak. The Tdeep is also consistent with the temperature-dependent thermionic emission peak position. By having only RNn/Nh through the MSA, it is possible to intuitively determine the existence and the peak position of the DLTS signal, and the majority carrier's density enables a more accurate extraction of the deep trap density in the DLTS analysis.

8.
Mikrochim Acta ; 189(9): 364, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045180

RESUMO

3D straw-sheaf-like cobalt oxide (SS-Co3O4) was prepared via the hydrothermal method and inert gas calcination of precursors without the assistance of any template or surfactant. It was composed of numerous nanoneedles with a length of ~ 8 µm and a diameter of ~ 30 nm strongly tied in the center. The SS-Co3O4 exhibited high crystallinity, a large surface area (39.01 m2.g-1), a smaller pore size (6 nm), and lower charge transfer resistance (Rct = 9.35 Ω) at the electrode/electrolyte interface. A non-enzymatic glucose oxidizing electrode fabricated with SS-Co3O4 showed a high sensitivity (669 µA.mM-1.cm-2), wide linear range (0.04-4.85 mM), low limit of detection (0.31 µM), good selectivity, fast response time (5 s), and high reproducibility with a relative standard deviation of 2.25%. In addition, its robust structure demonstrated excellent electrochemical stability by retaining 83.8% of the initial sensitivity when its current density vs. time response was measured for 75 min in bare electrolytes prior to the glucose-sensing test. Furthermore, it demonstrated excellent repeatability performance by retaining 87.0% of the initial sensitivity when a single electrode was tested for 4 cycles. The proposed robust structured 3D SS-Co3O4 electrode successfully responds to the content of glucose in human saliva, which substantially proves its suitability in practical application. The synthesis technique is advantageous to prepare other metal oxides with interesting morphology and robust structure for the development of more reliable non-enzymatic glucometers and other electrochemical devices.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Cobalto , Eletrodos , Glucose/química , Humanos , Óxidos , Reprodutibilidade dos Testes
9.
Nanomaterials (Basel) ; 12(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269255

RESUMO

In this study, we report the synthesis of a 3-dimensional (3D) hierarchical Bi3O4Cl/Bi5O7I (BOC/BOI) heterostructure for the photocatalytic degradation of Rhodamine-B (RhB) dye and colorless Bisphenol-A (BPA) pollutant under visible light. The heterostructure was prepared using in situ solvothermal and calcination methods. BOC/BOI exhibits a 3D hierarchical structure constructed with thin nano-platelets. The photocatalytic performance of the BOC/BOI photocatalyst demonstrated that the degradation efficiencies of RhB and BPA were 97% and 92% after light illumination within 90 and 30 min, respectively. In comparison, bare BOC and BOI efficiencies were only 20% and 10% for RhB dye, respectively, and 2.3% and 37% for BPA aqueous pollutants, respectively. Moreover, radical trapping measurements indicated that •O2- and •OH radicals played prominent roles in RhB and BPA degradation into mineralization. Analysis of band structures and photochemical redox reactions of BOC/BOI revealed a Z-scheme charge transfer between BOC and BOI by an internal electric field formed at the interface. Therefore, the highly improved photocatalytic performance of the BOC/BOI heterostructure is attributed to the synergetic effects of large surface area, high visible-light absorption, and the enhanced separation and transport of photo-excited electron-hole pairs induced by the hierarchical and Z-scheme heterojunction of the BOC/BOI.

10.
Nano Converg ; 9(1): 14, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316419

RESUMO

Herein, ZnO nanorods were doped with Co and decorated with CoO clusters through an in situ technique to create a CoO/Co-doped ZnO (CO/CZO) heterostructure at low temperatures (150 °C) on a flexible PET substrate. In the CO/CZO heterostructure, the Co dopant has a low energy barrier to substitute Zn atoms and adsorb over oxygen atoms and their vacancies. Therefore, it decreased the charge density (ND = 2.64 × 1019 cm-3) on non-active sites of ZnO and lowered the charge transfer resistance (317 Ω) at Co-doped-ZnO/electrolyte interface by suppressing the native defects and reducing the Schottky barrier height (- 0.35 eV), respectively. Furthermore, CoO clusters induced a p-n heterostructure with Co-doped ZnO, prevented corrosion, increased the active sites for analyte absorption, and increased the ultimate tensile strength (4.85 N m-2). These characteristics enabled the CO/CZO heterostructure to work as a highly sensitive, chemically stable, and flexible pH and glucose oxidation electrode. Therefore, CO/CZO heterostructure was explored for pH monitoring in human fluids and fruit juices, demonstrating a near-Nernst-limit pH sensitivity (52 mV/pH) and fast response time (19 s) in each human fluid and fruit juice. Also, it demonstrated high sensitivity (4656 µM mM-1 cm-2), low limit of detection (0.15 µM), a broad linear range (0.04 mM to 8.85 mM) and good anti-interference capacity towards glucose-sensing. Moreover, it demonstrated excellent flexibility performances, retained 53% and 69% sensitivity of the initial value for pH and glucose sensors, respectively, after 500 bending, stretching, and warping cycles.

11.
Polymers (Basel) ; 13(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34771327

RESUMO

Luminescent solar concentrators (LSCs) provide a transformative approach to integrating photovoltaics into a built environment. In this paper, we report thin-film LSCs composed of intramolecular charge transfer fluorophore (DACT-II) and discuss the effect of two polymers, polymethyl methacrylate (PMMA), and poly (benzyl methacrylate) (PBzMA) on the performance of large-area LSCs. As observed experimentally, DACT-II with the charge-donating diphenylaminocarbazole and charge-accepting triphenyltriazine moieties shows a large Stokes shift and limited re-absorption losses in both polymers. Our results show that thin-film LSC (10 × 10 × 0.3 cm3) with optimized concentration (0.9 wt%) of DACT-II in PBzMA gives better performance than that in the PMMA matrix. In particular, optical conversion efficiency (ηopt) and power-conversion efficiency (ηPCE) of DACT-II/PBzMA LSC are 2.32% and 0.33%, respectively, almost 1.2 times higher than for DACT-II/PMMA LSC.

12.
Chemosphere ; 275: 130052, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33652277

RESUMO

In this study, we report the construction of a novel composite photocatalyst (BiVO4/rGH) composed of quantum dots (QDs) self-decorated BiVO4-nanoparticels (NPs) and reduced graphene hydrogel (rGH). The composite structures were prepared using an in-situ growth method. The BiVO4/rGH composite photocatalysts exhibited excellent photocatalytic efficiency for the degradation of tetracycline hydrochloride (TCHCl). The promoted photocatalytic activity of the BiVO4/rGH is attributed to the synergetic effects of the unique structure involving QDs self-decorated BiVO4 NPs and a 3D network structure of rGH, which resulted in higher number of photogenerated charge carriers, surplus active sites, and enhanced charge separation. In addition, trapping measurements showed that ·O2- and h+, as the main active species, play a crucial role in the degradation of TCHCl over the composite photocatalyst. This study facilitates the design and construction of high efficiency hybrid photocatalysts with multifunctional materials for the removal of water pollutants.


Assuntos
Grafite , Pontos Quânticos , Antibacterianos , Bismuto , Catálise , Hidrogéis , Luz , Vanadatos
13.
J Colloid Interface Sci ; 581(Pt B): 514-522, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32814183

RESUMO

The Z-scheme BiVO4/α-Fe2O3 photocatalyst was synthesized by a simple hydrothermal method. The photocatalyst is composed of α-Fe2O3 nanocubes with a regular cubic structure and the BiVO4 particles distributed on the surface of the α-Fe2O3 nanocubes. The photocatalytic performance of Z-scheme BiVO4/α-Fe2O3 photocatalyst was investigated in terms of its capacity for photodegradation of tetracycline hydrochloride. Improved photocatalytic activity was observed for Z-scheme BiVO4/α-Fe2O3 photocatalyst compared with pure BiVO4 and α-Fe2O3 nanocubes under visible light irradiation. Studies of its morphology, physicochemical properties and photoelectrochemical behaviors demonstrated that BiVO4 loading on the surface of α-Fe2O3 nanocubes forms a Z-scheme heterojunction, which increases the specific surface area and significantly promotes the separation of photoinduced carriers. The main active species were determined to be OH and h+ by ESR technique and trapping experiments. We propose a possible photocatalytic mechanism of Z-scheme BiVO4/α-Fe2O3 photocatalyst system. This study may also provide a novel and eco-friendly demonstration of a useful strategy for the design and preparation of special structure photocatalytic materials.


Assuntos
Antibacterianos , Bismuto , Catálise , Luz , Vanadatos
14.
J Cancer ; 11(18): 5403-5412, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742487

RESUMO

Lower cellular elasticity is a distinguishing feature of cancer cells compared with normal cells. To determine whether cellular elasticity differs based on cancer cell type, cells were selected from three different cancer types including breast, cervix, and lung. For each cancer type, one counterpart normal cell and three types of cancer cells were selected, and their elasticity was measured using atomic force microscopy (AFM). The elasticity of normal cells was in the order of MCF10A > WI-38 ≥ Ect1/E6E7 which corresponds to the counterpart normal breast, lung, and cervical cancer cells, respectively. All cancer cells exhibited lower elasticity than their counterpart normal cells. Compared with the counterpart normal cells, the difference in cellular elasticity was the greatest in cervical cancer cells, followed by lung and breast cancer cells. This result indicates lower elasticity is a unique property of cancer cells; however, the reduction in elasticity may depend on the histological origin of the cells. The F-actin cytoskeleton of cancer cells was different in structure and content from normal cells. The F-actin is mainly distributed at the periphery of cancer cells and its content was mostly lower than that seen in normal cells.

15.
Cancer Cell Int ; 20: 217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32518526

RESUMO

BACKGROUND: Because cell movement is primarily driven by the connection between F-actin and integrin through a physical linkage, cellular elasticity and adhesion strength have been considered as biomarkers of cell motility. However, a consistent set of biomarkers that indicate the potential for cell motility is still lacking. METHODS: In this work, we characterize a phenotype of cell migration in terms of cellular elasticity and adhesion strength, which reveals the interdependence of subcellular systems that mediate optimal cell migration. RESULTS: Stiff cells weakly adhered to the substrate revealed superior motility, while soft cell migration with strong adhesion was relatively inhibited. The spatial distribution and amount of F-actin and integrin were highly variable depending on cell type, but their density exhibited linear correlations with cellular elasticity and adhesion strength, respectively. CONCLUSIONS: The densities of F-actin and integrin exhibited linear correlations with cellular elasticity and adhesion strength, respectively, therefore, they can be considered as biomarkers to quantify cell migration characteristics.

16.
ACS Sens ; 5(7): 2255-2262, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32597174

RESUMO

Highly strain-endurable gas sensors were implemented on fabric, which was taken from a real T-shirt, employing a sequential coating method. Multidimensional, functional nanostructures such as reduced graphene oxide, ZnO nanorods, palladium nanoparticles, and silver nanowires were integrated for their realization. It was revealed that the fabric gas sensors could detect both oxidizing and reducing gases at room temperature with differing signs and magnitudes of responses. Noticeably, the fabric gas sensors could normally work even under large strains up to 100%, which represents the highest strain tolerance in the gas sensor field. Furthermore, the fabric gas sensors turned out to bear harsh bending and twisting stresses. It was also demonstrated that the sequential coating method is an effective and facile way to control the size of the fabric gas sensor.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Óxido de Zinco , Gases , Paládio
17.
ACS Appl Mater Interfaces ; 12(18): 20849-20858, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32233356

RESUMO

Carbon dots (CDs) as new fluorescent materials with excellent fluorescence properties have shown enormous potential applications, especially in anticounterfeiting and cell imaging. Herein, nitrogen-doped CDs (NCDs) with excellent biocompatibility were prepared by a simple thermal sintering method. An extremely large red shift (∼130 nm) of the emission peak was observed when the excitation wavelength changes from 355 to 550 nm, indicating that NCDs are excellent fluorescent labeling materials for multiple cell imaging. On the other hand, NCDs showed obvious changes of emission intensity and peak position when the temperature increased from 223 to 323 K and the pH values changed from 1 to 13, respectively, which has been demonstrated by the "horse" pattern printed with NCD water-soluble fluorescent inks. The nontoxic NCDs dispersed in a multiple matrix are highly sensitive to excitation wavelength, temperature, and pH, indicating their great potential application in multiple anticounterfeiting and multiple cell imaging.


Assuntos
Corantes Fluorescentes/química , Fraude/prevenção & controle , Tinta , Pontos Quânticos/química , Alginatos/química , Carbono/química , Carbono/efeitos da radiação , Carbono/toxicidade , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/efeitos da radiação , Corantes Fluorescentes/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia de Fluorescência , Nitrogênio/química , Nitrogênio/efeitos da radiação , Nitrogênio/toxicidade , Pontos Quânticos/efeitos da radiação , Pontos Quânticos/toxicidade , Temperatura
18.
Materials (Basel) ; 13(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102187

RESUMO

Separation of refined silicon from Al-Si melt is still a puzzle for the solvent refining process, resulting in considerable waste of acid and silicon powder. A novel modified Czochralski method within the Al-Si alloy is proposed. After the modified Czochralski process, a large amount of refined Si particles was enriched around the seed crystalline Si and separated from the Al-Si melt. As for the Al-28%Si with the pulling rate of 0.001 mm/min, the recovery of refined Si in the pulled-up alloy (PUA) sample is 21.5%, an improvement of 22% compared with the theoretical value, which is much larger 1.99 times than that in the remained alloy (RA) sample. The content of impurities in the PUA is much less than that in the RA sample, which indicates that the modified Czochralski method is effective to improve the removal fraction of impurities. The apparent segregation coefficients of boron (B) and phosphorus (P) in the PUA and RA samples were evaluated. These results demonstrate that the modified Czochralski method for the alloy system is an effective way to enrich and separate refined silicon from the Al-Si melt, which provide a potential and clean production of solar grade silicon (SoG-Si) for the future industrial application.

19.
Nanomaterials (Basel) ; 10(2)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098379

RESUMO

For this study, polarity-controlled ZnO films were grown on lithium niobate (LiNbO3) substrates without buffer layers using the pulsed-laser deposition technique. The interfacial structure between the ZnO films and the LiNbO3 was inspected using high-resolution transmission electron microscopy (HR-TEM) measurements, and X-ray diffraction (XRD) measurements were performed to support these HR-TEM results. The polarity determination of the ZnO films was investigated using piezoresponse force microscopy (PFM) and a chemical-etching analysis. It was verified from the PFM and chemical-etching analyses that the ZnO film grown on the (+z) LiNbO3 was Zn-polar ZnO, while the O-polar ZnO occurred on the (-z) LiNbO3. Further, a possible mechanism of the interfacial atomic configuration between the ZnO on the (+z) LiNbO3 and that on the (-z) LiNbO3 was suggested. It appears that the electrostatic stability at the substrate surface determines the initial nucleation of the ZnO films, leading to the different polarities in the ZnO systems.

20.
ACS Nano ; 13(8): 8717-8724, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31294963

RESUMO

We materialized room-temperature ferromagnetism in ultrathin α-MoO3:Te nanoflakes. The α-MoO3:Te nanoflakes, which had been grown by vapor-phase epitaxy, clearly exhibited an Ag Raman band from symmetric stretching of υ(Mo-O3-Mo) in the 2D-like ultrathin α-MoO3:Te layer. Due to the intentional incorporation of smaller Te ions into bigger Mo sites, the pentacoordinated Mo5+ bonds were created inside the orthorhombic α-MoO3:Te lattice system. Since Mo5+ ions have magnetic moments from unpaired electron spins, a large number of overlapped bound magnetic polarons could be formed via ferromagnetic coupling with charged oxygen vacancies that are inevitably generated at pentacoordinated [Mo5+O5] centers. This gives rise to the increase in long-range ferromagnetic ordering and leads to room-temperature ferromagnetism in the entire α-MoO3:Te solid-state system. The results may move a step closer to the demonstration of spin functionalities in the wide bandgap semiconductor α-MoO3:Te.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA