Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 262
Filtrar
1.
Stem Cell Rev Rep ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001965

RESUMO

Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.

2.
Environ Res ; : 119640, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029727

RESUMO

Phosphorus in sewage is mostly enriched in activated sludge in wastewater treatment plants, making excess sludge an appropriate material for phosphorus recovery. The potential of vivianite (Fe3(PO4)2·8H2O) crystallization-based phosphorus recovery during the anaerobic digestion of thermally hydrolyzed sludge was discussed with influences of organic compounds on the formation of vivianite crystals being investigated in detail. Bovine serum albumin, humic acids and alginate, as model compounds of proteins, humic acids and polysaccharides, all inhibited vivianite crystallization, with the influence of humic acids being the most significant. A sludge retention time of > 12 d for effective degradation of organic compounds and a certain degree of FeII excess are suggested to decrease the organics resulting inhibition. The results demonstrate the compatibility of vivianite-crystallization pathway of phosphorus recovery with anaerobic sludge digesters, and reveal the complexity of vivianite formation in the sludge with further research warranted to minimize the inhibitory influences.

3.
Sci Total Environ ; : 174856, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39034004

RESUMO

The diversity of soil adsorbents for arsenic (As) and the often-overlooked influence of manganese (Mn) on As(III) oxidation impose challenges in predicting As adsorption in soils. This study uses Mössbauer spectroscopy, X-ray diffraction of oriented clay, and batch experiments to develop a kinetic coupled multi-surface complexation model that characterizes As adsorbents in natural soils and quantifies their contributions to As adsorption. The model integrates dynamic adsorption behaviors and Mn-oxide interactions with unified thermodynamic and kinetic parameters. The results indicate that As adsorption is governed by five primary adsorbents: poorly crystalline Fe oxides, well crystalline Fe oxides, Fe-rich clay, Fe-depletion clay, and organic carbon (OC). Fe oxides dominate As adsorption at low As concentrations. However, at higher As concentrations, soils from carbonate strata, with higher content of Fe-rich clay, exhibit stronger As adsorption capabilities than soils from Quaternary sediment strata. The enrichment in Fe-rich clay can enhance the resistance of adsorbed As to reduction processes affecting Fe oxides. Additionally, extensive redox cycles in paddy fields increase OC levels, enhancing their As adsorption compared to upland fields. This model framework provides novel insights into the intricate dynamics of As within soils and a versatile tool for predicting As adsorption across diverse soils.

4.
Nat Commun ; 15(1): 5961, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013878

RESUMO

Autoreactive CD4+ T helper cells are critical players that orchestrate the immune response both in multiple sclerosis (MS) and in other neuroinflammatory autoimmune diseases. Ubiquitination is a posttranslational protein modification involved in regulating a variety of cellular processes, including CD4+ T cell differentiation and function. However, only a limited number of E3 ubiquitin ligases have been characterized in terms of their biological functions, particularly in CD4+ T cell differentiation and function. In this study, we found that the RING finger protein 213 (RNF213) specifically promoted regulatory T (Treg) cell differentiation in CD4+ T cells and attenuated autoimmune disease development in an FOXO1-dependent manner. Mechanistically, RNF213 interacts with Forkhead Box Protein O1 (FOXO1) and promotes nuclear translocation of FOXO1 by K63-linked ubiquitination. Notably, RNF213 expression in CD4+ T cells was induced by IFN-ß and exerts a crucial role in the therapeutic efficacy of IFN-ß for MS. Together, our study findings collectively emphasize the pivotal role of RNF213 in modulating adaptive immune responses. RNF213 holds potential as a promising therapeutic target for addressing disorders associated with Treg cells.


Assuntos
Diferenciação Celular , Proteína Forkhead Box O1 , Interferon beta , Linfócitos T Reguladores , Ubiquitina-Proteína Ligases , Ubiquitinação , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Camundongos , Humanos , Interferon beta/metabolismo , Camundongos Endogâmicos C57BL , Núcleo Celular/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Transporte Ativo do Núcleo Celular , Feminino , Camundongos Knockout , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/genética , Células HEK293
5.
Front Pharmacol ; 15: 1365639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021837

RESUMO

Sepsis is a complex syndrome characterized by multi-organ dysfunction, due to the presence of harmful microorganisms in blood which could cause mortality. Complications associated with sepsis involve multiple organ dysfunction. The pathogenesis of sepsis remains intricate, with limited treatment options and high mortality rates. Traditional Chinese medicine (TCM) has consistently demonstrated to have a potential on various disease management. Its complements include reduction of oxidative stress, inhibiting inflammatory pathways, regulating immune responses, and improving microcirculation. Traditional Chinese medicine can mitigate or even treat sepsis in a human system. This review examines progress on the use of TCM extracts for treating sepsis through different pharmacological action and its mechanisms. The potential targets of TCM extracts and active ingredients for the treatment of sepsis and its complications have been elucidated through molecular biology research, network pharmacology prediction, molecular docking analysis, and visualization analysis. Our aim is to provide a theoretical basis and empirical support for utilizing TCM in the treatment of sepsis and its complications while also serving as a reference for future research and development of sepsis drugs.

6.
Life Sci ; 352: 122811, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38862062

RESUMO

Macrophages play key roles in atherosclerosis progression, and an imbalance in M1/M2 macrophages leads to unstable plaques; therefore, M1/M2 macrophage polarization-targeted treatments may serve as a new approach in the treatment of atherosclerosis. At present, there is little research on M1/M2 macrophage polarization-targeted nanotechnology. Proteolysis-targeting chimera (PROTAC) technology, a targeted protein degradation technology, mediates the degradation of target proteins and has been widely promoted in preclinical and clinical applications as a novel therapeutic modality. This review summarizes the recent studies on M1/M2 macrophage polarization-targeted nanotechnology, focusing on the mechanism and advantages of PROTACs in M1/M2 macrophage polarization as a new approach for the treatment of atherosclerosis.

7.
Environ Manage ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867057

RESUMO

The development of renewable energy has become an important means for the world to cope with climate change, ensure energy security, and protect the ecological environment. Using the panel data of 30 provinces in China from 2013 to 2021, this study used the mediating effect model and the spatial Durbin model (SDM) to explore the mechanism and spatial effects of renewable energy development on China's regional carbon emission reduction. The results show that: (1) Renewable energy development can help to reduce carbon emission intensity. (2) The results of mechanism analysis show that renewable energy development reduces carbon intensity by improving energy structure, promoting industrial structure optimization, and industrial structure upgrading. (3) The development of renewable energy can not only reduce the local carbon intensity but also have a positive spillover effect on the carbon intensity of neighboring regions. (4) Further analysis shows that the long-term effect of renewable energy development on carbon emissions is greater than the short-term effect. At the same time, the heterogeneity analysis shows that compared with the Yellow River basin, the development of renewable energy has a significant carbon emission reduction effect in the Yangtze River Economic Belt region. Energy-rich areas fall into the "resource curse", which makes the carbon emission reduction effect of renewable energy development not significant. This paper has certain reference significance for promoting reasonable decomposition between regions and formulating renewable energy development policies.

8.
Adv Sci (Weinh) ; : e2404456, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894569

RESUMO

Considerable progress has been made in the development of drug delivery systems for diabetic wounds. However, underlying drawbacks, such as low delivery efficiency and poor tissue permeability, have rarely been addressed. In this study, a multifunctional biohybrid nanorobot platform comprising an artificial unit and several biological components is constructed. The artificial unit is a magnetically driven nanorobot surface modified with antibacterial 2-hydroxypropyltrimethyl ammonium chloride chitosan, which enables the entire platform to move and has excellent tissue penetration capacity. The biological components are two-step engineered extracellular vesicles that are first loaded with mangiferin, a natural polyphenolic compound with antioxidant properties, and then glycoengineered on the surface to enhance cellular uptake efficiency. As expected, the platform is more easily absorbed by endothelial cells and fibroblasts and exhibits outstanding dermal penetration performance and antioxidant properties. Encouraging results are also observed in infected diabetic wound models, showing improved wound re-epithelialization, collagen deposition, angiogenesis, and accelerated wound healing. Collectively, a biohybrid nanorobot platform that possesses the functionalities of both artificial units and biological components serves as an efficient delivery system to promote diabetic wound repair through dual-enhanced cell and tissue penetration and multistep interventions.

9.
Nano Lett ; 24(22): 6821-6827, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38787786

RESUMO

In the quasi-two-dimensional superconductor NbSe2, the superconducting transition temperature (Tc) is layer-dependent, decreasing by about 60% in the monolayer limit. However, for the extremely anisotropic copper-based high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi-2212), the Tc of the monolayer is almost identical with that of its bulk counterpart. To clarify the effect of dimensionality on superconductivity, here, we successfully fabricate ultrathin flakes of iron-based high-Tc superconductors CsCa2Fe4As4F2 and CaKFe4As4. It is found that the Tc of monolayer CsCa2Fe4As4F2 (after tuning to the optimal doping by ionic liquid gating) is about 20% lower than that of the bulk crystal, while the Tc of three-layer CaKFe4As4 decreases by 46%, showing a more pronounced dimensional effect than that of CsCa2Fe4As4F2. By carefully examining their anisotropy and the c-axis coherence length, we reveal the general trend and empirical law of the layer-dependent superconductivity in these quasi-two-dimensional superconductors.

10.
J Vis Exp ; (206)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38738889

RESUMO

Follicular Helper T (TFH) cells are perceived as an independent CD4+ T cell lineage that assists cognate B cells in producing high-affinity antibodies, thus establishing long-term humoral immunity. During acute viral infection, the fate commitment of virus-specific TFH cells is determined in the early infection phase, and investigations of the early-differentiated TFH cells are crucial in understanding T cell-dependent humoral immunity and optimizing vaccine design. In the study, using a mouse model of acute lymphocytic choriomeningitis virus (LCMV) infection and the TCR-transgenic SMARTA (SM) mouse with CD4+ T cells specifically recognizing LCMV glycoprotein epitope I-AbGP66-77, we described procedures to access the early fate commitment of virus-specific TFH cells based on flow cytometry stainings. Furthermore, by exploiting retroviral transduction of SM CD4+ T cells, methods to manipulate gene expression in early-differentiated virus-specific TFH cells are also provided. Hence, these methods will help in studies exploring the mechanism(s) underlying the early commitment of virus-specific TFH cells.


Assuntos
Linfócitos T CD4-Positivos , Diferenciação Celular , Coriomeningite Linfocítica , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Citometria de Fluxo/métodos , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células T Auxiliares Foliculares/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
11.
Pol J Pathol ; 75(1): 40-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741428

RESUMO

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Estresse do Retículo Endoplasmático , Células Ganglionares da Retina , Transdução de Sinais , Resposta a Proteínas não Dobradas , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Linhagem Celular , Adiponectina/metabolismo , Sobrevivência Celular , Glucose/metabolismo , Glaucoma/metabolismo , Glaucoma/patologia , Glicoproteínas
12.
Epilepsia Open ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38798030

RESUMO

OBJECTIVE: To evaluate the prevalence of and risk factors for attention-deficit/hyperactivity disorder (ADHD) in children with epilepsy (CWE). METHODS: We conducted a systematic search in PubMed and Embase for the meta-analysis. The pooled prevalence of ADHD was calculated using a random-effects model; subgroup analyses were performed to explore heterogeneity. We collected raw data from articles reporting potential risk factors, which were included in the subsequent risk factor analysis. RESULTS: Forty-six articles met the inclusion criteria for the meta-analysis, which showed a pooled ADHD prevalence of 30.7% in CWE, with a predominance of the inattentive subtype of ADHD; the heterogeneity of prevalence was related to population source/study setting (clinic based, community based, or database based) and method of ADHD diagnosis (with or without clinical review). Risk factors for ADHD in epilepsy included younger age, intellectual/developmental disabilities, a family history of epilepsy, earlier epilepsy onset, absence epilepsy, more frequent seizures, and polytherapy; In contrast, risk factors such as sex, generalized epilepsy or seizures, epilepsy etiology, and electroencephalogram abnormalities were not significantly associated with the occurrence of ADHD. SIGNIFICANCE: The prevalence of ADHD in CWE is high and several potential risk factors are associated with it. This study contributes to a better understanding of ADHD in epilepsy for screening and treatment. PLAIN LANGUAGE SUMMARY: This systematic review summarizes the prevalence of attention-deficit/hyperactivity disorder (ADHD) occurring in children with epilepsy and analyses the risk factors for comorbid ADHD in epilepsy. By reviewing 46 articles, we concluded that the overall prevalence of ADHD in children with epilepsy was 30.7% and that intellectual/developmental disabilities were the most significant risk factor for combined ADHD in children with epilepsy. This study provides a wealth of information on comorbid ADHD in epilepsy, which will help clinicians identify and treat potential ADHD in children with epilepsy in a timely manner.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124420, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38728848

RESUMO

As common pollutants, Cu2+ and glyphosate pose a serious threat to human health and the ecosystem. Herein, a fluorescent probe (E)-7-(diethylamino)-N'(4-(diethylamino)-2-hydroxybenzyl)-2-oxo-2H chromophore-3-carbazide (DDHC) was designed and synthesised for the sequential recognition of Cu2+ and glyphosate. DDHC has the advantages of a short synthesis path, easy-to-obtain raw materials, good anti-interference ability, and strong stability. The interaction of the DDHC-Cu2+ complexes with glyphosate allows the amino and carboxyl groups in glyphosate molecules to coordinate with Cu2+ strongly, competing for the Cu2+ in the DDHC-Cu2+ complexes and releasing the DDHC, leading to the recovery of fluorescence. The recognition was further validated through Job's plot, HRMS, and DFT calculations. In addition, the successful recovery of Cu2+ and glyphosate in different environmental water samples fully demonstrates the practical application potential of DDHC. Especially, DDHC has low cytotoxicity and can enter zebrafish and HeLa cells, rapidly reacting with Cu2+ and glyphosate in the body, generating visible fluorescence quenching and recovery phenomena, achieving real-time visual monitoring of exogenous Cu2+ and glyphosate in zebrafish and HeLa cells. The targeting and dual selectivity of DDHC greatly enhance its potential application value in the field of detection, providing important theoretical support for studying the fate of multiple pollutants in the environment.


Assuntos
Cobre , Corantes Fluorescentes , Glicina , Glifosato , Peixe-Zebra , Glicina/análogos & derivados , Glicina/análise , Glicina/química , Cobre/análise , Cobre/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Animais , Células HeLa , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Herbicidas/análise , Teoria da Densidade Funcional
14.
Curr Med Sci ; 44(2): 247-260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622425

RESUMO

Extracellular vesicles (EVs) are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity, natural functionality, and excellent biocompatibility. However, limitations such as low uptake efficiency, insufficient production, and inhomogeneous performance undermine their potential. To address these issues, numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades. In this review, we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake. In addition, we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.


Assuntos
Vesículas Extracelulares , Sistemas de Liberação de Medicamentos/métodos
15.
J Control Release ; 370: 210-229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648955

RESUMO

Chronic skin wounds, especially infected ones, pose a significant clinical challenge due to their increasing incidence and poor outcomes. The deteriorative microenvironment in such wounds, characterized by reduced extracellular matrix, impaired angiogenesis, insufficient neurogenesis, and persistent bacterial infection, has prompted the exploration of novel therapeutic strategies. In this study, we developed an injectable multifunctional hydrogel (GEL/BG@Cu + Mg) incorporating Gelatin-Tannic acid/ N-hydroxysuccinimide functionalized polyethylene glycol and Bioactive glass doped with copper and magnesium ions to accelerate the healing of infected wounds. The GEL/BG@Cu + Mg hydrogel composite demonstrates good biocompatibility, degradability, and rapid formation of a protective barrier to stop bleeding. Synergistic bactericidal effects are achieved through the photothermal properties of BG@Cu + Mg and sustained copper ions release, with the latter further promoting angiogenesis. Furthermore, the hydrogel enhances neurogenesis by stimulating axons and Schwann cells in the wound bed through the beneficial effects of magnesium ions. Our results demonstrate that the designed novel multifunctional hydrogel holds tremendous promise for treating infected wounds and allowing regenerative neurogenesis at the wound site, which provides a viable alternative for further improving clinical outcomes.


Assuntos
Antibacterianos , Bandagens , Cobre , Hidrogéis , Neurogênese , Cicatrização , Animais , Neurogênese/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/administração & dosagem , Cicatrização/efeitos dos fármacos , Cobre/química , Cobre/administração & dosagem , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Vidro/química , Magnésio/química , Magnésio/administração & dosagem , Masculino , Polietilenoglicóis/química , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Ratos Sprague-Dawley , Gelatina/química , Humanos
16.
Inorg Chem ; 63(18): 8171-8179, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38655575

RESUMO

Although 1,10-phenanthroline has been proven to hold a strong complexing capacity for f-block elements and their derivatives have been applied in many fields, research on more highly or completely rigid phenanthroline ligands is still rare due to the challenging syntheses. Here, we reported three tetradentate ligands 2,9-di(pyridin-2-yl)-1,10-phenanthroline (L1), 12-(pyridin-2-yl)-5,6-dihydroquinolino[8,7b][1,10]phenanthroline (L2), and 5,6,11,12-tetrahydrobenzo[2,1-b:3,4-b']bis([1,10]phenanthroline) (L3) with increasing preorganization on the side chain; among which, L3 is fully preorganized. Their complexation reactions with Eu(III) were systematically investigated by electrospray ionization mass spectrometry (ESI-MS), UV-vis titrations, and single-crystal structures. It is found that all three ligands form only 1:1 M/L complexes with Eu(III). The single-crystal structures revealed that the three ligands hold similar coordination modes, while their stability constants determined by UV-vis titrations were L3 (4.80 ± 0.01) > L2 (4.38 ± 0.01) > L1 (3.88 ± 0.01). This trend is supported not only by the thermodynamic stability of rigid ligands compared to free ligands but also by the conclusion that rigid ligands exhibit faster reaction rates (lower energy barrier) than free ligands kinetically. This work is helpful in providing theoretical guidance for the subsequent development of highly preorganized chelating ligands with strong coordination ability and high selectivity for f-block elements.

17.
Int J Biol Macromol ; 267(Pt 1): 131575, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614178

RESUMO

Wound healing is a dynamic and complex process, it's urgent to develop new wound dressings with excellent performance to promote wound healing at the different stages. Here, a novel composite hydrogel dressing composed by silver nanoparticles (AgNPs) impregnated adenine-modified chitosan (CS-A) and octafunctionalized polyhedral oligomeric silsesquioxane (POSS) of benzaldehyde-terminated polyethylene glycol (POSS-PEG-CHO) solution was presented to solve the problem of wound infection. Modification of chitosan with adenine, not only can improve the water solubility of chitosan, but also introduce bioactive substances to promote cell proliferation. CS-A and POSS-PEG-CHO were cross-linked by Schiff-base reaction to form the injectable self-healing hydrogel. On this basis, AgNPs were added into the hydrogel, which endows the hydrogel with better antibacterial activity. Moreover, this kind of hydrogel exhibits excellent cell proliferation properties. Studies demonstrated that the hydrogel can significantly accelerate the closure of infected wounds. The histological analysis and immunofluorescence staining demonstrated that the wounds treated with the composite hydrogel exhibited fewer inflammatory cells, more collagen deposition and angiogenesis, faster regeneration of epithelial tissue. Above all, adenine-modified chitosan composite hydrogel with AgNPs loaded was considered as a dressing material with great application potential for promoting the healing of infected wounds.


Assuntos
Adenina , Antibacterianos , Proliferação de Células , Quitosana , Hidrogéis , Nanopartículas Metálicas , Polietilenoglicóis , Prata , Cicatrização , Quitosana/química , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Polietilenoglicóis/química , Prata/química , Prata/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Nanopartículas Metálicas/química , Adenina/farmacologia , Adenina/química , Camundongos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Ratos , Humanos , Infecção dos Ferimentos/tratamento farmacológico
18.
Chem Commun (Camb) ; 60(38): 5042-5045, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38634237

RESUMO

Epimers of the (1,10-phenanthroline-2,9-diyl)bis(ethyl(phenyl)phosphine oxide) (Et-Ph-BPPhen) ligand with two chiral centers (R,R/S,S and R,S) were synthesized. The configurational effects on the coordination ability and mechanism between these epimeric ligands and uranyl ions were thoroughly investigated. This work is helpful to reveal the effects of different conformations of epimeric ligands on their coordination properties.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38632039

RESUMO

The mutant strain Halomonas bluephagenesis (TDH4A1B5P) was found to produce PHA under low-salt, non-sterile conditions, but the yield was low. To improve the yield, different nitrogen sources were tested. It was discovered that urea was the most effective nitrogen source for promoting growth during the stable stage, while ammonium sulfate was used during the logarithmic stage. The growth time of H. bluephagenesis (TDH4A1B5P) and its PHA content were significantly prolonged by the presence of sulfate ions. After 64 hr in a 5-L bioreactor supplemented with sulfate ions, the dry cell weight (DCW) of H. bluephagenesis weighed 132 g/L and had a PHA content of 82%. To promote the growth and PHA accumulation of H. bluephagenesis (TDH4A1B5P), a feeding regimen supplemented with nitrogen sources and sulfate ions with ammonium sodium sulfate was established in this study. The DCW was 124 g/L, and the PHA content accounted for 82.3% (w/w) of the DCW, resulting in a PHA yield of 101 g/L in a 30-L bioreactor using the optimized culture strategy. In conclusion, stimulating H. bluephagenesis (TDH4A1B5P) to produce PHA is a feasible and suitable strategy for all H. bluephagenesis.


Assuntos
Reatores Biológicos , Meios de Cultura , Halomonas , Nitrogênio , Poli-Hidroxialcanoatos , Sulfatos , Halomonas/metabolismo , Halomonas/crescimento & desenvolvimento , Halomonas/genética , Sulfatos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Meios de Cultura/química , Nitrogênio/metabolismo , Sulfato de Amônio/metabolismo , Ureia/metabolismo , Fermentação
20.
Nat Cancer ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609488

RESUMO

Tumor-specific T cells are crucial in anti-tumor immunity and act as targets for cancer immunotherapies. However, these cells are numerically scarce and functionally exhausted in the tumor microenvironment (TME), leading to inefficacious immunotherapies in most patients with cancer. By contrast, emerging evidence suggested that tumor-irrelevant bystander T (TBYS) cells are abundant and preserve functional memory properties in the TME. To leverage TBYS cells in the TME to eliminate tumor cells, we engineered oncolytic virus (OV) encoding TBYS epitopes (OV-BYTE) to redirect the antigen specificity of tumor cells to pre-existing TBYS cells, leading to effective tumor inhibition in multiple preclinical models. Mechanistically, OV-BYTE induced epitope spreading of tumor antigens to elicit more diverse tumor-specific T cell responses. Remarkably, the OV-BYTE strategy targeting human severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory efficiently inhibited tumor progression in a human tumor cell-derived xenograft model, providing important insights into the improvement of cancer immunotherapies in a large population with a history of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) vaccination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA