Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Int J Biol Macromol ; 272(Pt 1): 132697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843607

RESUMO

As a translucent functional gel with biodegradability, non-toxicity and acid resistance, gellan gum has been widely used in probiotic packaging, drug delivery, wound dressing, metal ion adsorption and other fields in recent years. Because of its remarkable gelation characteristics, gellan gum is suitable as the shell material of microcapsules to encapsulate functional substances, by which the functional components can improve stability and achieve delayed release. In recent years, many academically or commercially reliable products have rapidly emerged, but there is still a lack of relevant reports on in-depth research and systematic summaries regarding the process of microcapsule formation and its corresponding mechanisms. To address this challenge, this review focuses on the formation process and applications of gellan gum-based microcapsules, and details the commonly used preparation methods in microcapsule production. Additionally, it explores the impact of factors such as ion types, ion strength, temperature, pH, and others present in the solution on the performance of the microcapsules. On this basis, it summarizes and analyzes the prospects of gellan gum-based microcapsule products. The comprehensive insights from this review are expected to provide inspiration and design ideas for researchers.


Assuntos
Cápsulas , Emulsões , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Cápsulas/química , Emulsões/química , Concentração de Íons de Hidrogênio , Temperatura
2.
Adv Sci (Weinh) ; : e2401009, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751156

RESUMO

Biodegradable plastics, hailed for their environmental friendliness, may pose unforeseen risks as they undergo gastrointestinal degradation, forming oligomer nanoplastics. Despite this, the influence of gastrointestinal degradation on the potential human toxicity of biodegradable plastics remains poorly understood. To this end, the impact of the murine in vivo digestive system is investigated on the biotransformation, biodistribution, and toxicity of PLA polymer and PLA oligomer MPs. Through a 28-day repeated oral gavage study in mice, it is revealed that PLA polymer and oligomer microplastics undergo incomplete and complete degradation, respectively, in the gastrointestinal tract. Incompletely degraded PLA polymer microplastics transform into oligomer nanoplastics, heightening bioavailability and toxicity, thereby exacerbating overall toxic effects. Conversely, complete degradation of PLA oligomer microplastics reduces bioavailability and mitigates toxicity, offering a potential avenue for toxicity reduction. Additionally, the study illuminates shared targets and toxicity mechanisms in Parkinson's disease-like neurotoxicity induced by both PLA polymer and PLA oligomer microplastics. This involves the upregulation of MICU3 in midbrains, leading to neuronal mitochondrial calcium overload. Notably, neurotoxicity is mitigated by inhibiting mitochondrial calcium influx with MCU-i4 or facilitating mitochondrial calcium efflux with DBcAMP in mice. These findings enhance the understanding of the toxicological implications of biodegradable microplastics on human health.

3.
Food Chem ; 454: 139834, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38815322

RESUMO

Modern science often overlooks to reveal the scientific essence of traditional crafts to promote their inheritance and development. In this work, five different types of tea products were prepared using the same variety of tea leaves referring to traditional methods. The analysis of their components and activities indicated that the processing reduced total catechin contents (from 172.8 mg/g to 48.2 mg/g) and promoted the synthesis of theaflavins (from 17.9 mg/g to 43.4 mg/g), reducing antioxidant and antimicrobial abilities of the resulting tea products. On this basis, the tea products were applied to "tea flavored beef" to reveal long-term effects. Within 15 days of storage, tea treatment showed remarkable antimicrobial and antioxidant activities on the beef. Also, the declines of sensory scores and texture of the treated beef were significantly suppressed. Meanwhile, protein degradation in the beef was inhibited, limiting the contents of various biogenic amines within relatively low levels.

4.
J Nutr ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735573

RESUMO

BACKGROUND: □ OBJECTIVES: This study aimed to investigate the association between consumption of ultraprocessed foods and leucocyte telomere length (LTL). METHODS: This cross-sectional study utilized data from the UK Biobank, including a total of 64,690 participants. LTL was measured using qPCR with natural logarithmic conversion and z-score normalization. Dietary data were collected through a 24-h recall questionnaire from 2009 to 2010. Ultraprocessed foods (UPFs) were identified using the NOVA food classification as either a continuous or a categorical variable. Multiple linear regression models were employed to analyze the association between UPF consumption and LTL. RESULTS: The included participants had an average age of 56.26 y, of whom 55.2% were female. After adjusting for demographic and health-related variables, LTL exhibited a decrease of 0.005 (95% CI: -0.007, -0.002) with 1 UPF serving increase. Compared with participants consuming ≤3.5 servings/d, those consuming 3.5 to <6 servings showed a shortening of LTL by 0.025 (95% CI: -0.046, -0.003). Participants consuming 6 to ≤8 servings/d and >8 servings/d had LTL shortening of 0.032 (95% CI: -0.054, -0.011) and 0.037 (95% CI: -0.060, -0.014), respectively (P for trend = 0.002). Subgroup analyses by UPF subclasses revealed that the consumption of ready-to-eat/heated food (ß: -0.010; 95% CI: -0.016, -0.004), beans and potatoes (ß: -0.027; 95% CI: -0.043, -0.012), animal-based products (ß: -0.012; 95% CI: -0.020, -0.005), artificial sugar (ß: -0.014; 95% CI:-0.025,-0.003), and beverages (ß: -0.005; 95% CI: -0.009, -0.001) showed negative associations with LTL. Conversely, breakfast cereals (ß: 0.022; 95% CI: 0.006, 0.038) and vegetarian alternatives (ß: 0.056; 95% CI:0.026,0.085) showed positive correlations with LTL. CONCLUSIONS: Our study found that a higher consumption of total UPF was associated with a shorter LTL. However, some UPFs may be associated with longer LTL, depending on their nutritional composition.

5.
Sci Total Environ ; 932: 172876, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692326

RESUMO

Nanoplastics (NPs) and triclosan (TCS) are ubiquitous emerging environmental contaminants detected in human samples. While the reproductive toxicity of TCS alone has been studied, its combined effects with NPs remain unclear. Herein, we employed Fourier transform infrared spectroscopy and dynamic light scattering to characterize the coexposure of polystyrene nanoplastics (PS-NPs, 50 nm) with TCS. Then, adult zebrafish were exposed to TCS at environmentally relevant concentrations (0.361-48.2 µg/L), with or without PS-NPs (1.0 mg/L) for 21 days. TCS biodistribution in zebrafish tissues was investigated using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Reproductive toxicity was assessed through gonadal histopathology, fertility tests, changes in steroid hormone synthesis and gene expression within the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptomics and proteomics were applied to explore the underlying mechanisms. The results showed that PS-NPs could adsorb TCS, thus altering the PS-NPs' physical characteristics. Our observations revealed that coexposure with PS-NPs reduced TCS levels in the ovaries, livers, and brains of female zebrafish. Conversely, in males, coexposure with PS-NPs increased TCS levels in the testes and livers, while decreasing them in the brain. We found that co-exposure mitigated TCS-induced ovary development inhibition while exacerbated TCS-induced spermatogenesis suppression, resulting in increased embryonic mortality and larval malformations. This co-exposure influenced the expression of genes linked to steroid hormone synthesis (cyp11a1, hsd17ß, cyp19a1) and attenuated the TCS-decreased estradiol (E2) in females. Conversely, testosterone levels were suppressed, and E2 levels were elevated due to the upregulation of specific genes (cyp11a1, hsd3ß, cyp19a1) in males. Finally, the integrated analysis of transcriptomics and proteomics suggested that the aqp12-dctn2 pathway was involved in PS-NPs' attenuation of TCS-induced reproductive toxicity in females, while the pck2-katnal1 pathway played a role in PS-NPs' exacerbation of TCS-induced reproductive toxicity in males. Collectively, PS-NPs altered TCS-induced reproductive toxicity by disrupting the HPGL axis, with gender-specific effects.


Assuntos
Poliestirenos , Reprodução , Triclosan , Poluentes Químicos da Água , Peixe-Zebra , Animais , Triclosan/toxicidade , Poliestirenos/toxicidade , Feminino , Masculino , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Fatores Sexuais
6.
J Hazard Mater ; 470: 134298, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626679

RESUMO

4-methylbenzylidene camphor (4-MBC) and micro/nanoplastics (MNPs) are common in personal care and cosmetic products (PCCPs) and consumer goods; however, they have become pervasive environmental contaminants. MNPs serve as carriers of 4-MBC in both PCCPs and the environment. Our previous study demonstrated that 4-MBC induces estrogenic effects in zebrafish larvae. However, knowledge gaps remain regarding the sex- and tissue-specific accumulation and potential toxicities of chronic coexposure to 4-MBC and MNPs. Herein, adult zebrafish were exposed to environmentally realistic concentrations of 4-MBC (0, 0.4832, and 4832 µg/L), with or without polystyrene nanoplastics (PS-NPs; 50 nm, 1.0 mg/L) for 21 days. Sex-specific accumulation was observed, with higher concentrations in female brains, while males exhibited comparable accumulation in the liver, testes, and brain. Coexposure to PS-NPs intensified the 4-MBC burden in all tested tissues. Dual-omics analysis (transcriptomics and proteomics) revealed dysfunctions in neuronal differentiation, death, and reproduction. 4-MBC-co-PS-NP exposure disrupted the brain histopathology more severely than exposure to 4-MBC alone, inducing sex-specific neurotoxicity and reproductive disruptions. Female zebrafish exhibited autism spectrum disorder-like behavior and disruption of vitellogenesis and oocyte maturation, while male zebrafish showed Parkinson's-like behavior and spermatogenesis disruption. Our findings highlight that PS-NPs enhance tissue accumulation of 4-MBC, leading to sex-specific impairments in the nervous and reproductive systems of zebrafish.


Assuntos
Cânfora , Cânfora/análogos & derivados , Peixe-Zebra , Animais , Masculino , Feminino , Cânfora/toxicidade , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Reprodução/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Compostos Benzidrílicos/toxicidade , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo
7.
Foods ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672926

RESUMO

Pentachlorophenol (PCP) is a ubiquitous emerging persistent organic pollutant detected in the environment and foodstuffs. Despite the dietary intake of PCP being performed using surveillance data, the assessment does not consider the bioaccessibility and bioavailability of PCP. Pork, beef, pork liver, chicken and freshwater fish Ctenopharyngodon Idella-fortified by three levels of PCP were processed by RIVM and the Caco-2 cell model after steaming, boiling and pan-frying, and PCP in foods and digestive juices were detected using isotope dilution-UPLC-MS/MS. The culinary treatment and food matrix were significantly influenced (p < 0.05) in terms of the bioaccessibility and bioavailability of PCP. Pan-frying was a significant factor (p < 0.05) influencing the digestion and absorption of PCP in foods, with the following bioaccessibility: pork (81.37-90.36%), beef (72.09-83.63%), pork liver (69.11-78.07%), chicken (63.43-75.52%) and freshwater fish (60.27-72.14%). The bioavailability was as follows: pork (49.39-63.41%), beef (40.32-53.43%), pork liver (33.63-47.11%), chicken (30.63-40.83%) and freshwater fish (17.14-27.09%). Pork and beef with higher fat content were a key factor in facilitating the notable PCP bioaccessibility and bioavailability (p < 0.05). Further, the exposure of PCP to the population was significantly reduced by 42.70-98.46% after the consideration of bioaccessibility and bioavailability, with no potential health risk. It can improve the accuracy of risk assessment for PCP.

8.
Toxics ; 12(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535947

RESUMO

Phthalic acid esters (PAEs), commonly used as plasticizers, are pervasive in the environment, leading to widespread human exposure. The association between phthalate exposure and metabolic disorders has been increasingly recognized, yet the precise biological mechanisms are not well-defined. In this study, we explored the effects of monoethylhexyl phthalate (MEHP) and monocyclohexyl phthalate (MCHP) on glucose and lipid metabolism in human hepatocytes and adipocytes. In hepatocytes, MEHP and MCHP were observed to enhance lipid uptake and accumulation in a dose-responsive manner, along with upregulating genes involved in lipid biosynthesis. Transcriptomic analysis indicated a broader impact of MEHP on hepatic gene expression relative to MCHP, but MCHP particularly promoted the expression of the gluconeogenesis key enzymes G6PC and FBP1. In adipocytes, MEHP and MCHP both increased lipid droplet formation, mimicking the effects of the Peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (Rosi). Transcriptomic analysis revealed that MEHP predominantly altered fatty acid metabolism pathways in mature adipocytes (MA), whereas MCHP exhibited less impact. Metabolic perturbations from MEHP and MCHP demonstrate shared activation of the PPARs pathway in hepatocytes and adipocytes, but the cell-type discrepancy might be attributed to the differential expression of PPARγ. Our results indicate that MEHP and MCHP disrupt glucose and lipid homeostasis in human liver and adipose through mechanisms that involve the PPAR and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways, highlighting the nuanced cellular responses to these environmental contaminants.

9.
Int Immunopharmacol ; 131: 111820, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508092

RESUMO

Exogenous hydrogen peroxide (H2O2) may generate excessive oxidative stress, inducing renal cell apoptosis related with kidney dysfunction. Geniposide (GP) belongs to the iridoid compound with anti-inflammatory, antioxidant and anti-apoptotic effects. This study aimed to observe the intervention effect of GP on H2O2-induced apoptosis in human kidney-2 (HK-2) cells and to explore its potential mechanism in relation to N6-methyladenosine (m6A) RNA methylation. Cell viability, apotosis rate and cell cycle were tested separately after different treatments. The mRNA and protein levels of m6A related enzymes and phosphoinositide 3-kinase (PI3K)/a serine/threonine-specific protein kinase 3 (AKT3)/forkhead boxo 1 (FOXO1) and superoxide dismutase 2 (SOD2) were detected by reverse transcription-quantitative real-time PCR (RT-qPCR) and Western blot. The whole m6A methyltransferase activity and the m6A content were measured by ELISA-like colorimetric methods. The changes of m6A methylation levels of PI3K/AKT3/FOXO1 and SOD2 were determined by methylated RNA immunoprecipitation (MeRIP)-qPCR. Multiple comparisons were performed by ANOVA with Turkey's post hoc test. Exposed to 400 µmol/L H2O2, cells were arrested in G1 phase and the apoptosis rate increased, which were significantly alleviated by GP. Compared with the H2O2 apoptosis group, both the whole m6A RNA methyltransferase activity and the m6A contents were increased due to GP intervention. Besides, the SOD2 protein was increased, while PI3K and FOXO1 decreased. The m6A methylation level of AKT3 was negatively correlated with its protein level. Taken together, GP affects the global m6A methylation microenvironment and regulates the expression of PI3K/AKT3/FOXO1 signaling pathway via m6A modification, alleviating cell cycle arrest and apoptosis caused by oxidative stress in HK-2 cells with a good application prospect.


Assuntos
Adenina , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Humanos , Peróxido de Hidrogênio , Rim , Iridoides/farmacologia , Apoptose , Estresse Oxidativo , RNA , Metiltransferases , Proteína Forkhead Box O1 , Proteínas Proto-Oncogênicas c-akt
10.
Foods ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38472772

RESUMO

Prunella vulgaris L. (PV) is a widely distributed plant species, known for its versatile applications in both traditional and contemporary medicine, as well as in functional food development. Despite its broad-spectrum antimicrobial utility, the specific mechanism of antibacterial action remains elusive. To fill this knowledge gap, the present study investigated the antibacterial properties of PV extracts against methicillin-resistant Staphylococcus aureus (MRSA) and assessed their mechanistic impact on bacterial cells and cellular functions. The aqueous extract of PV demonstrated greater anti-MRSA activity compared to the ethanolic and methanolic extracts. UPLC-ESI-MS/MS tentatively identified 28 phytochemical components in the aqueous extract of PV. Exposure to an aqueous extract at ½ MIC and MIC for 5 h resulted in a significant release of intracellular nucleic acid (up to 6-fold) and protein (up to 10-fold) into the extracellular environment. Additionally, this treatment caused a notable decline in the activity of several crucial enzymes, including a 41.51% reduction in alkaline phosphatase (AKP), a 45.71% decrease in adenosine triphosphatase (ATPase), and a 48.99% drop in superoxide dismutase (SOD). Furthermore, there was a decrease of 24.17% at ½ MIC and 27.17% at MIC in tricarboxylic acid (TCA) cycle activity and energy transfer. Collectively, these findings indicate that the anti-MRSA properties of PV may stem from its ability to disrupt membrane and cell wall integrity, interfere with enzymatic activity, and impede bacterial cell metabolism and the transmission of information and energy that is essential for bacterial growth, ultimately resulting in bacterial apoptosis. The diverse range of characteristics exhibited by PV positions it as a promising antimicrobial agent with broad applications for enhancing health and improving food safety and quality.

11.
Environ Int ; 184: 108480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38341879

RESUMO

1,2-Dichloroethane (1,2-DCE) is a prevalent environmental contaminant, and our study revealed its induction of testicular toxicity in mice upon subacute exposure. Melatonin, a prominent secretory product of the pineal gland, has been shown to offer protection against pyroptosis in male reproductive toxicity. However, the exact mechanism underlying 1,2-DCE-induced testicular toxicity and the comprehensive extent of melatonin's protective effects in this regard remain largely unexplored. Therefore, we sequenced testis piRNAs in mice exposed to environmentally relevant concentrations of 1,2-DCE by 28-day dynamic inhalation, and investigated the role of key piRNAs using GC-2 spd cells. Our results showed that 1,2-DCE induced mouse testicular damage and GC-2 spd cell pyroptosis. 1,2-DCE upregulated the expression of pyroptosis-correlated proteins in both mouse testes and GC-2 spd cells. 1,2-DCE exposure caused pore formation on cellular membranes and lactate dehydrogenase leakage in GC-2 spd cells. Additionally, we identified three upregulated piRNAs in 1,2-DCE-exposed mouse testes, among which piR-mmu-1019957 induced pyroptosis in GC-2 spd cells, and its inhibition alleviated 1,2-DCE-induced pyroptosis. PiR-mmu-1019957 mimic and 1,2-DCE treatment activated the expression of interferon regulatory factor 7 (IRF7) in GC-2 spd cells. IRF7 knockdown reversed 1,2-DCE-induced cellular pyroptosis, and overexpression of piR-mmu-1019957 did not promote pyroptosis when IRF7 was inhibited. Notably, melatonin reversed 1,2-DCE-caused testicular toxicity, cellular pyroptosis, and upregulated piR-mmu-1019957 and IRF7. Collectively, our findings indicated that melatonin mitigates this effect, suggesting its potential as a therapeutic intervention against 1,2-DCE-induced male reproductive toxicity in clinical practice.


Assuntos
Dicloretos de Etileno , Melatonina , Testículo , Masculino , Camundongos , Animais , Piroptose , Melatonina/farmacologia , Melatonina/metabolismo , RNA de Interação com Piwi , Fator Regulador 7 de Interferon/metabolismo , Fator Regulador 7 de Interferon/farmacologia
12.
Environ Health Perspect ; 132(2): 27011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381479

RESUMO

BACKGROUND: Micro- and nanoplastics (MNPs) and homosalate (HMS) are ubiquitous emerging environmental contaminants detected in human samples. Despite the well-established endocrine-disrupting effects (EDEs) of HMS, the interaction between MNPs and HMS and its impact on HMS-induced EDEs remain unclear. OBJECTIVES: This study aimed to investigate the influence of MNPs on HMS-induced estrogenic effects and elucidate the underlying mechanisms in vitro and in vivo. METHODS: We assessed the impact of polystyrene nanospheres (PNSs; 50 nm, 1.0mg/L) on HMS-induced MCF-7 cell proliferation (HMS: 0.01-1µM, equivalent to 2.62-262µg/L) using the E-SCREEN assay and explored potential mechanisms through transcriptomics. Adult zebrafish were exposed to HMS (0.0262-262µg/L) with or without PNSs (50 nm, 1.0mg/L) for 21 d. EDEs were evaluated through gonadal histopathology, fertility tests, steroid hormone synthesis, and gene expression changes in the hypothalamus-pituitary-gonad-liver (HPGL) axis. RESULTS: Coexposure of HMS and PNSs resulted in higher expression of estrogen receptor α (ESR1) and the mRNAs of target genes (pS2, AREG, and PGR), a greater estrogen-responsive element transactivation activity, and synergistic stimulation on MCF-7 cell proliferation. Knockdown of serum and glucocorticoid-regulated kinase 1 (SGK1) rescued the MCF-7 cell proliferation induced by PNSs alone or in combination with HMS. In zebrafish, coexposure showed higher expression of SGK1 and promoted ovary development but inhibited spermatogenesis. In addition, coexposure led to lower egg hatchability, higher embryonic mortality, and greater larval malformation. Coexposure also modulated steroid hormone synthesis genes (cyp17a2, hsd17[Formula: see text]1, esr2b, vtg1, and vtg2), and resulted in higher 17ß-estradiol (E2) release in females. Conversely, males showed lower testosterone, E2, and gene expressions of cyp11a1, cyp11a2, cyp17a1, cyp17a2, and hsd17[Formula: see text]1. DISCUSSION: PNS exposure exacerbated HMS-induced estrogenic effects via SGK1 up-regulation in MCF-7 cells and disrupting the HPGL axis in zebrafish, with gender-specific patterns. This offers new mechanistic insights and health implications of MNP and contaminant coexposure. https://doi.org/10.1289/EHP13696.


Assuntos
Nanosferas , Adulto , Feminino , Humanos , Masculino , Animais , Peixe-Zebra , Células MCF-7 , Poliestirenos/toxicidade , Estrogênios , Glucocorticoides , Esteroides
13.
Sci Total Environ ; 921: 171109, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387563

RESUMO

Microplastics (MPs), an emerging environmental contaminant, have raised growing health apprehension due to their detection in various human biospecimens. Despite extensive research into their prevalence in the environment and the human body, the ramifications of their existence within the enclosed confines of the human eye remain largely unexplored. Herein, we assembled a cohort of 49 patients with four ocular diseases (macular hole, macular epiretinal membrane, retinopathy and rhegmatogenous retinal detachment) from two medical centers. After processing the samples with an optimized method, we utilized Laser Direct Infrared (LD-IR) spectroscopy and Pyrolysis Gas Chromatography/Mass Spectrometry (Py-GC/MS) to analyze 49 vitreous samples, evaluating the characteristics of MPs within the internal environment of the human eye. Our results showed that LD-IR scanned a total of 8543 particles in the composite sample from 49 individual vitreous humor samples, identifying 1745 as plastic particles, predominantly below 50 µm. Concurrently, Py-GC/MS analysis of the 49 individual samples corroborated these findings, with nylon 66 exhibiting the highest content, followed by polyvinyl chloride, and detection of polystyrene. Notably, correlations were observed between MP levels and key ocular health parameters, particularly intraocular pressure and the presence of aqueous humor opacities. Intriguingly, individuals afflicted with retinopathy demonstrated heightened ocular health risks associated with MPs. In summary, this research provides significant insights into infiltration of MP pollutants within the human eye, shedding light on their potential implications for ocular health and advocating for further exploration of this emerging health risk.


Assuntos
Doenças Retinianas , Poluentes Químicos da Água , Humanos , Corpo Vítreo/química , Microplásticos , Plásticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Poluentes Químicos da Água/análise
14.
Food Res Int ; 177: 113900, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225143

RESUMO

This work aims to explore an available avenue to design an equilibrium modified atmosphere packaging (EMAP) by the modification of gas permeability of material. In this work, the introduction of available active sites endowed materials with adjustable gas permeability properties. With varying concentrations of the resulting materials with various gas permeability, the CO2 and O2 gas permeability of the blending films were modified at the range of 3.92 âˆ¼ 17.84 barrier and 0.65 âˆ¼ 3.46 barrier, respectively. On this basis, the films were used as EMAP to preserve postharvest cabbages. The results indicated that each EMAP achieved an equilibrium atmosphere containing 6.8 % ∼ 3.8 % CO2 and 2.1 % ∼ 5.2 % O2 within 15 h and maintained it continuously. In these atmosphere, the respiratory rate of the preserved cabbages was significantly inhibited, thereby delaying the deterioration of their storage quality. As the results, sensory scores of the preserved samples were maximally maintained. Declines of color indexes and texture indexes were obviously inhibited. Chemical variations in chlorophyll content, total phenolics content, total flavonoids content, ascorbic acid and nitrite content were significantly suppressed. The overall findings revealed that this method is suitable and promising to develop EMAP for the postharvest vegetables.


Assuntos
Brassica , Embalagem de Alimentos , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Dióxido de Carbono , Oxigênio/química , Domínio Catalítico , Atmosfera
15.
Ecotoxicol Environ Saf ; 271: 115928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215666

RESUMO

Nephrotoxicity is a common adverse effect induced by various chemicals, necessitating the development of reliable toxicity screening models for nephrotoxicity assessment. In this study, we assessed a group of nephrotoxicity indicators derived from different toxicity pathways, including conventional endpoints and kidney tubular injury biomarkers such as clusterin (CLU), kidney injury molecule-I (KIM-1), osteopontin (OPN), and neutrophil gelatinase-associated lipocalin (NGAL), using HK-2 and induced pluripotent stem cells (iPSCs)-derived renal proximal tubular epithelial-like cells (PTLs). Among the biomarkers tested, OPN emerged as the most discerning and precise marker. The predictive potential of OPN was tested using a panel of 10 nephrotoxic and 5 non-nephrotoxic compounds. The results demonstrated that combining OPN with the half-maximal inhibitory concentration (IC50) enhanced the diagnostic accuracy in both cellular models. Additionally, PTLs cells showed superior predictive efficacy for nephrotoxicity compared to HK-2 cells in this investigation. The two cellular models were utilized to evaluate the nephrotoxicity of lanthanum. The findings indicated that lanthanum possesses nephrotoxic properties; however, the degree of nephrotoxicity was relatively low, consistent with the outcomes of in vivo experiments.


Assuntos
Lantânio , Osteopontina , Humanos , Osteopontina/metabolismo , Lantânio/toxicidade , Lantânio/metabolismo , Rim , Túbulos Renais/metabolismo , Biomarcadores/metabolismo
16.
Adv Sci (Weinh) ; 10(36): e2303753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991139

RESUMO

The increased use of low-dose computed tomography screening has led to more frequent detection of early stage lung tumors, including minimally invasive adenocarcinoma (MIA). To unravel the intricacies of tumor cells and the immune microenvironment in MIA, this study performs a comprehensive single-cell transcriptomic analysis and profiles the transcriptomes of 156,447 cells from fresh paired MIA and invasive adenocarcinoma (IA) tumor samples, peripheral blood mononuclear cells, and adjacent normal tissue samples from three patients with synchronous multiple primary lung adenocarcinoma. This study highlights a connection and heterogeneity between the tumor ecosystem of MIA and IA. MIA tumor cells exhibited high expression of aquaporin-1 and angiotensin II receptor type 2 and a basal-like molecular character. Furthermore, it identifies that cathepsin B+ tumor-associated macrophages may over-activate CD8+ T cells in MIA, leading to an enrichment of granzyme K+ senescent CD8+ T cells, indicating the possibility of malignant progression behind the indolent appearance of MIA. These findings are further validated in 34 MIA and 35 IA samples by multiplexed immunofluorescence. These findings provide valuable insights into the mechanisms that maintain the indolent nature and prompt tumor progression of MIA and can be used to develop more effective therapeutic targets and strategies for MIA patients.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfócitos T CD8-Positivos , Ecossistema , Leucócitos Mononucleares , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/genética , Pulmão/patologia , Perfilação da Expressão Gênica , Microambiente Tumoral/genética
17.
Food Chem Toxicol ; 182: 114158, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37940031

RESUMO

Geniposide (GP) is the homology of medicine and food with bioactive effects of antioxidation and resistance to apoptosis in the liver. It's of great significance to explore the biosafety exposure limits and action mechanisms of GP. This study detected the global DNA methylation microenvironment and the regulation of specific genes in GP against cellular apoptosis induced by hydrogen peroxide (H2O2) of human hepatocyte L-02 cells. The half inhibitory concentration (IC50) of GP on normal L-02 cells was 57.7 mg/mL. GP exerted new epigenetic activity, increased DNMT1, decreased TET1 and TET2 expression, and reversed the demethylation effect to some extent, thereby increasing the overall genomic DNA methylation level at the concentration of 900 µg/mL. GP pretreatment could also adjust the level of P53, Bcl-2 and AKT altered by H2O2, reducing their specific DNA methylation levels in the promoter regions of AKT and Bcl-2 to inhibit apoptosis. Taken together, GP regulates the global DNA methylation level and controls the expression changes of P53, Bcl-2 and AKT, jointly inhibiting the occurrence of apoptosis in human hepatocytes and providing the newly theoretical references for its safety evaluation.


Assuntos
Metilação de DNA , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Hepatócitos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/farmacologia , Proteínas Proto-Oncogênicas/genética
18.
Toxins (Basel) ; 15(11)2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37999509

RESUMO

Aflatoxins are liver carcinogens and are common contaminants in unpackaged peanut (UPP) oil. However, the health risks associated with consuming aflatoxins in UPP oil remain unclear. In this study, aflatoxin contamination in 143 UPP oil samples from Guangdong Province were assessed via liquid chromatography-tandem mass spectrometry (LC-MS). We also recruited 168 human subjects, who consumed this oil, to measure their liver functions and lipid metabolism status. Aflatoxin B1 (AFB1) was detected in 79.72% of the UPP oil samples, with levels ranging from 0.02 to 174.13 µg/kg. The average daily human intake of AFB1 from UPP oil was 3.14 ng/kg·bw/day; therefore, the incidence of liver cancer, caused by intake of 1 ng/kg·bw/day AFB1, was estimated to be 5.32 cases out of every 100,000 persons per year. Meanwhile, Hepatitis B virus (HBV) infection and AFB1 exposure exerted a synergistic effect to cause liver dysfunction. In addition, the triglycerides (TG) abnormal rate was statistically significant when using AFB1 to estimate daily intake (EDI) quartile spacing grouping (p = 0.011). In conclusion, high aflatoxin exposure may exacerbate the harmful effects of HBV infection on liver function. Contamination of UPP oil with aflatoxins in Guangdong urgently requires more attention, and public health management of the consumer population is urgently required.


Assuntos
Aflatoxinas , Humanos , Aflatoxinas/toxicidade , Aflatoxinas/análise , Óleo de Amendoim/análise , Contaminação de Alimentos/análise , Aflatoxina B1/toxicidade , Aflatoxina B1/análise , China/epidemiologia
19.
Part Fibre Toxicol ; 20(1): 44, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993864

RESUMO

BACKGROUND: Microplastics and nanoplastics (MNPs) are emerging environmental contaminants detected in human samples, and have raised concerns regarding their potential risks to human health, particularly neurotoxicity. This study aimed to investigate the deleterious effects of polystyrene nanoplastics (PS-NPs, 50 nm) and understand their mechanisms in inducing Parkinson's disease (PD)-like neurodegeneration, along with exploring preventive strategies. METHODS: Following exposure to PS-NPs (0.5-500 µg/mL), we assessed cytotoxicity, mitochondrial integrity, ATP levels, and mitochondrial respiration in dopaminergic-differentiated SH-SY5Y cells. Molecular docking and dynamic simulations explored PS-NPs' interactions with mitochondrial complexes. We further probed mitophagy's pivotal role in PS-NP-induced mitochondrial damage and examined melatonin's ameliorative potential in vitro. We validated melatonin's intervention (intraperitoneal, 10 mg/kg/d) in C57BL/6 J mice exposed to 250 mg/kg/d of PS-NPs for 28 days. RESULTS: In our in vitro experiments, we observed PS-NP accumulation in cells, including mitochondria, leading to cell toxicity and reduced viability. Notably, antioxidant treatment failed to fully rescue viability, suggesting reactive oxygen species (ROS)-independent cytotoxicity. PS-NPs caused significant mitochondrial damage, characterized by altered morphology, reduced mitochondrial membrane potential, and decreased ATP production. Subsequent investigations pointed to PS-NP-induced disruption of mitochondrial respiration, potentially through interference with complex I (CI), a concept supported by molecular docking studies highlighting the influence of PS-NPs on CI. Rescue experiments using an AMPK pathway inhibitor (compound C) and an autophagy inhibitor (3-methyladenine) revealed that excessive mitophagy was induced through AMPK/ULK1 pathway activation, worsening mitochondrial damage and subsequent cell death in differentiated SH-SY5Y cells. Notably, we identified melatonin as a potential protective agent, capable of alleviating PS-NP-induced mitochondrial dysfunction. Lastly, our in vivo experiments demonstrated that melatonin could mitigate dopaminergic neuron loss and motor impairments by restoring mitophagy regulation in mice. CONCLUSIONS: Our study demonstrated that PS-NPs disrupt mitochondrial function by affecting CI, leading to excessive mitophagy through the AMPK/ULK1 pathway, causing dopaminergic neuron death. Melatonin can counteract PS-NP-induced mitochondrial dysfunction and motor impairments by regulating mitochondrial autophagy. These findings offer novel insights into the MNP-induced PD-like neurodegenerative mechanisms, and highlight melatonin's protective potential in mitigating the MNP's environmental risk.


Assuntos
Melatonina , Neuroblastoma , Humanos , Camundongos , Animais , Mitofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Poliestirenos/metabolismo , Microplásticos , Neurônios Dopaminérgicos/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Simulação de Acoplamento Molecular , Plásticos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trifosfato de Adenosina/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia
20.
Food Res Int ; 173(Pt 1): 113325, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803636

RESUMO

The impact of curcumin-mediated photodynamic treatment (PDT) on the microbiological, physicochemical and sensory qualities of salmon sashimi has not been explored. Herein, this study aimed to evaluate the effects of PDT on the shelf-life quality of ready-to-eat salmon fillets during chilled storage (4 °C) in comparison with five widely investigated natural extracts, including cinnamic aldehyde, rosmarinic acid, chlorogenic acid, dihydromyricetin and nisin. From a microbial perspective, PDT exhibited outstanding bacterial inhibition, the results of total viable counts, total coliform bacteria, psychrotrophic bacteria, Pseudomonas spp., Enterobacteriaceae family, and H2S-producing bacteria were notably inactivated (p < 0.05) to meet the acceptable limits by PDT in comparison with those of the control group and natural origin groups, which could extend the shelf-life of salmon fillets from<6 days to 10 days. In the alteration of physicochemical indicators, PDT and natural extracts were able to maintain the pH value and retard lipid oxidation in salmon fillets, while apparently slowing the accumulation (p < 0.05) of total volatile basic nitrogen and biogenic amines, especially the allergen histamine, which contrary to with the variation trend of spoilage microbiota. In parallel, PDT worked effectively (p < 0.05) on the breakdown of adenosine triphosphate and adenosine diphosphate to maintain salmon fillet freshness. Additionally, the physical indicators of texture profile and color did not have obvious changes (p < 0.05) after treated by PDT during the shelf life. Besides, the sensory scores of salmon samples were also significantly improved. In general, PDT not only has a positive effect on organoleptic indicators but is also a potential antimicrobial strategy for improving the quality of salmon sashimi.


Assuntos
Curcumina , Salmo salar , Animais , Conservação de Alimentos/métodos , Armazenamento de Alimentos , Curcumina/farmacologia , Curcumina/metabolismo , Alimentos Marinhos/análise , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA