Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Infect Drug Resist ; 17: 4531-4537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39464834

RESUMO

Peptoniphilus asaccharolyticus is a gram-positive anaerobic coccus that can cause infections in immunocompromised individuals. P. asaccharolyticus causing empyema has not been reported earlier. Here, we present a novel case of empyema caused by P. asaccharolyticus. A 72-year-old male had a constant fever with difficulty breathing. A chest computed tomography scan revealed infiltration in the right lower lobe and pleural effusion. Following hospital admission, pleural fluid drainage was conducted, and the culture isolated P. asaccharolyticus. Initially treated with piperacillin/tazobactam, the patient experienced excessive thick sputum production, prompting a tracheostomy. Subsequent sputum cultures identified Acinetobacter baumannii. After transitioning to cefoperazone/sulbactam for antibiotic treatment and continued pleural effusion drainage, recovery was achieved. Empyema can be caused by P. asaccharolyticus and further complicated by a secondary infection with A. baumannii. Management should include appropriate antibiotic therapy, pleural drainage, vigilant monitoring, and supportive care. We aim to raise clinicians' awareness of the potential for P. asaccharolyticus to cause empyema in immunocompromised patients and to provide early treatments, thereby improving morbidity and mortality.

2.
Plant Cell Environ ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440579

RESUMO

Clonal perennial grasses are the dominant species in almost all natural grasslands, however their seed production is typically low. The reasons why seed set is so low remains unclear. We studied a rhizomatous grass (Leymus chinensis) using 13C tracing the different photosynthetic organs to investigate carbon fixation and allocation during the seed-filling stage. We found that the vegetative ramet leaves are the largest (81%) source for total plant fixed carbon, whereas almost all carbon is allocated to vegetative reproduction. The spike is the largest (54%) carbon source for the seeds. However, the spike produced carbon only allocated 37% to the seeds, with the majority allocated to vegetative reproduction. This preferential carbon allocation to vegetative reproduction limits sexual reproduction. Nitrogen application significantly increased assimilated carbon. However, nearly all increased carbon accumulated in the vegetative reproduction rather than in the seeds. Only the carbon produced by the spike increased its allocation to the seeds by 13%. Taken together, we conclude that the predominance of vegetative reproduction, combined with self-incompatibility, results in low ovule fertilization and very weak seed sink strength for carbon competition, suggests that the weak seed sink strength is the key reason causing low seed set in L. chinensis.

3.
Proc Natl Acad Sci U S A ; 121(20): e2400610121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713623

RESUMO

Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Histonas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/metabolismo
4.
Infect Drug Resist ; 17: 1919-1925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766677

RESUMO

Hemorrhagic fever with renal syndrome (HFRS), a naturally occurring epidemic disease, is primarily caused by hantaviruses. It frequently involves the lungs and is characterized by symptoms such as fever, hemorrhage, and renal failure. However, the occurrence of acute pancreatitis (AP) in HFRS patients can be neglected, and high intraocular pressure (IOP) is exceedingly uncommon. In this report, we discuss the case of a 30-year-old male who presented with fever, nausea, vomiting, and abdominal pain. Physical examination revealed extremity petechiae rashes and elevated IOP. Laboratory tests indicated coagulopathy and renal failure. A computed tomography scan confirmed AP. Further testing revealed a positive anti-hantavirus IgM antibody. The patient received supportive care, fluid hydration, hemofiltration, mannitol, brinzolamide, and brimonidine to reduce IOP. Three days post-admission, the patient developed shortness of breath and chest pain. Subsequent chest computed tomography revealed pulmonary edema and bilateral pleural effusion. Treatment included oxygen supply, respiratory support, and thoracentesis, with continued hemofiltration. The patient recovered, regaining normal pulmonary and renal functions and normalized IOP. This case underscores the importance of comprehensive evaluations and vigilant monitoring in HFRS patients, particularly measuring IOP in those with visual complaints, to save lives and reduce morbidity.

5.
Molecules ; 29(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611715

RESUMO

The plant-derived toxin ricin is classified as a type 2 ribosome-inactivating protein (RIP) and currently lacks effective clinical antidotes. The toxicity of ricin is mainly due to its ricin toxin A chain (RTA), which has become an important target for drug development. Previous studies have identified two essential binding pockets in the active site of RTA, but most existing inhibitors only target one of these pockets. In this study, we used computer-aided virtual screening to identify a compound called RSMI-29, which potentially interacts with both active pockets of RTA. We found that RSMI-29 can directly bind to RTA and effectively attenuate protein synthesis inhibition and rRNA depurination induced by RTA or ricin, thereby inhibiting their cytotoxic effects on cells in vitro. Moreover, RSMI-29 significantly reduced ricin-mediated damage to the liver, spleen, intestine, and lungs in mice, demonstrating its detoxification effect against ricin in vivo. RSMI-29 also exhibited excellent drug-like properties, featuring a typical structural moiety of known sulfonamides and barbiturates. These findings suggest that RSMI-29 is a novel small-molecule inhibitor that specifically targets ricin toxin A chain, providing a potential therapeutic option for ricin intoxication.


Assuntos
Ricina , Animais , Camundongos , Proteínas Inativadoras de Ribossomos Tipo 2 , Desenvolvimento de Medicamentos , Hidrolases , Fígado
7.
Mater Today Bio ; 25: 101008, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38495915

RESUMO

Massive blood loss due to injury is the leading cause of prehospital deaths in disasters and emergencies. Hemostatic materials are used to realize rapid hemostasis and protect patients from death. Researchers have designed and developed a variety of hemostatic materials. However, in addition to their hemostatic effect, hemostatic materials must be endowed with additional functions to meet the practical application requirements in different scenarios. Here, strategies for modifications of hemostatic materials for use in different application scenarios are listed: effective positioning at the site of deep and narrow wounds to stop bleeding, resistance to high blood pressure and wound movement to maintain wound formation, rapid and easy removal from the wound without affecting further treatment after hemostasis is completed, and continued function when retained in the wound as a dressing (such as antibacterial, antiadhesion, tissue repair, etc.). The problems encountered in the practical use of hemostatic materials and the strategies and progress of researchers will be further discussed in this review. We hope to provide valuable references for the design of more comprehensive and practical hemostatic materials.

8.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464211

RESUMO

Introduction: Dibutyl phthalate (DBP), a phthalate congener, is widely utilized in consumer products and medication coatings. Women of reproductive age have a significant burden of DBP exposure through consumer products, occupational exposure, and medication. Prenatal DBP exposure is associated with adverse pregnancy/fetal outcomes and cardiovascular diseases in the offspring. However, the role of fetal sex and the general mechanisms underlying DBP exposure-associated adverse pregnancy outcomes are unclear. We hypothesize that prenatal DBP exposure at an environmentally relevant low dosage adversely affects fetal-placental development and function during pregnancy in a fetal sex-specific manner. Methods: Adult female CD-1 mice (8-10wks) were orally treated with vehicle (control) or with environmentally relevant low DBP dosages at 0.1 µg/kg/day (refer as DBP0.1) daily from 30 days before pregnancy through gestational day (GD) 18.5. Dam body mass composition was measured non-invasively using the echo-magnetic resonance imaging system. Lipid disposition in fetal labyrinth and maternal decidual area of placentas was examined using Oil Red O staining. Results: DBP0.1 exposure did not significantly affect the body weight and adiposity of non-pregnant adult female mice nor the maternal weight gain pattern and adiposity during pregnancy in adult female mice. DBP0.1 exposure does not affect fetal weight but significantly increased the placental weight at GD18.5 (indicative of decreased placental efficiency) in a fetal sex-specific manner. We further observed that DBP0.1 significantly decreased lipid disposition in fetal labyrinth of female, but not male placentas, while it did not affect lipid disposition in maternal decidual. Conclusions: Prenatal exposure to environmentally relevant low-dosage DBP adversely impacts the fetal-placental efficiency and lipid disposition in a fetal sex-specific manner.

9.
ACS Appl Mater Interfaces ; 16(13): 16399-16407, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527861

RESUMO

Composition screening and structure optimization are two critical factors in improving the electrocatalytic performance of hybrid materials. Herein, we present a straightforward hydrothermal hydrolyzation-topological transformation strategy for the synthesis of a range of Ni-Co bimetallic compounds with a hollow nanoflower structure. Among these Ni-Co compounds, Ni2P/Co2P hollow nanoflowers (HNFs) exhibit the most impressive electrocatalytic activity for the hydrogen evolution reaction (HER), necessitating only an 153 mV overpotential to achieve a current density of 10 mA cm-2 under alkaline conditions. Importantly, this performance remains stable for over 48 h, indicating exceptional durability. The exceptional catalytic performance of Ni2P/Co2P HNFs arises from the synergy between the hybrid Ni2P/Co2P components and the hollow nanoflower structure. The former provides abundant catalytic sites, while electron rearrangement at the heterointerfaces enhances the adsorption/desorption of active species and facilitates electron transfer. The latter contributes to the exposure of catalytic sites, shortening mass and charge transfer routes, and bolstering structural stability during prolonged electrocatalysis. This research offers valuable insights into the screening and optimization of advanced hybrid electrocatalysts, holding significant promise for applications in the emerging field of new energy technologies.

10.
ACS Omega ; 8(48): 46276-46283, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075825

RESUMO

Precisely controlled heteroatom-doped metal-free carbon catalysts are highly desirable for use in various renewable energy conversion and storage devices. Herein, we report a nitrogen-doped metal-free carbon catalyst for the oxygen reduction reaction (ORR) using a facile and cost-effective synthetic method. The obtained catalysts (NC-1100) were synthesized in two steps via an amino-acid complex coating and high-temperature carbonization. The various physical characteristics revealed that NC-1100 has a unique morphology, a controlled nitrogen bonding configuration, and a uniform pore distribution. The resulting catalyst shows excellent catalytic performance toward direct 4-electron oxygen reduction reaction (ORR) in an alkaline electrolyte, with a high onset potential of 0.95 V versus RHE and limiting current density (4.5 mA cm-2). Furthermore, the developed catalysts showed superior long-term operating stability and methanol durability compared to those of commercial Pt/C. This study provides a promising guideline for the development of next-generation electrocatalysts for fuel cells and wider applications.

11.
Chem Asian J ; 18(20): e202300534, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37545336

RESUMO

The manufacture of efficient and low-cost hydrogen evolution reaction (HER) catalysts is regarded as a critical solution to achieve carbon neutrality. Herein, we developed an economical method to synthesize a CoP-anchored N-doped carbon catalyst via one-step pyrolysis using inexpensive starting materials (cobalt ion salt, phytic acid, and glycine). The size of the CoP nanoparticles was controlled by adjusting the Co/P ratio of the catalysts. Nanoscale CoP particles with adequate exposure to active sites were uniformly anchored on the surface of the conductive nitrogen-doped carbon substrate, ensuring the rapid transfer of electrons and species. When Co/P=0.89, the as-made catalyst exhibited outstanding HER activity, with an extraordinarily low overpotential of 202 mV at 10 mA cm-2 and long-term stability.

12.
Mater Today Bio ; 21: 100709, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37455822

RESUMO

Small-diameter vascular grafts (SDVGs) are urgently required for clinical applications. Constructing vascular grafts mimicking the defining features of native arteries is a promising strategy. Here, we constructed a tri-layered vascular graft with a native artery decellularized extracellular matrix (dECM) mimicking the component of arteries. The porcine thoracic aorta was decellularized and milled into dECM powders from the differential layers. The intima and media dECM powders were blended with poly (L-lactide-co-caprolactone) (PLCL) as the inner and middle layers of electrospun vascular grafts, respectively. Pure PLCL was electrospun as a strengthening sheath for the outer layer. Salidroside was loaded into the inner layer of vascular grafts to inhibit thrombus formation. In vitro studies demonstrated that dECM provided a bioactive milieu for human umbilical vein endothelial cell (HUVEC) extension adhesion, proliferation, migration, and tube-forming. The in vivo studies showed that the addition of dECM could promote endothelialization, smooth muscle regeneration, and extracellular matrix deposition. The salidroside could inhibit thrombosis. Our study mimicked the component of the native artery and combined it with the advantages of synthetic polymer and dECM which provided a promising strategy for the design and construction of SDVGs.

13.
J Physiol ; 601(16): 3631-3645, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37401732

RESUMO

Preeclampsia (PE) differentially impairs female and male fetal endothelial cell function, which is associated with an increased risk of adult-onset cardiovascular disorders in children born to mothers with PE. However, the underlying mechanisms are poorly defined. We hypothesize that dysregulation of microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in PE disturbs gene expression and cellular responses to cytokines in fetal endothelial cells in a fetal sex-dependent manner. RT-qPCR analysis of miR-29a/c-3p was performed on female and male unpassaged (P0) human umbilical vein endothelial cells (HUVECs) from normotensive (NT) pregnancies and PE. Bioinformatic analysis of an RNA-seq dataset was performed to identify PE-dysregulated miR-29a/c-3p target genes in female and male P0-HUVECs. Gain- and loss-of-function assays were conducted to determine the effects of miR-29a/c-3p on endothelial monolayer integrity and proliferation in response to transforming growth factor-ß1 (TGFß1) and tumour necrosis factor-α (TNFα) in NT and PE HUVECs at passage 1. We observed that PE downregulated miR-29a/c-3p in male and female P0-HUVECs. PE dysregulated significantly more miR-29a/c-3p target genes in female vs. male P0-HUVECs. Many of these PE-differentially dysregulated miR-29a/c-3p target genes are associated with critical cardiovascular diseases and endothelial function. We further demonstrated that miR-29a/c-3p knockdown specifically recovered the PE-abolished TGFß1-induced strengthening of endothelial monolayer integrity in female HUVECs, while miR-29a/c-3p overexpression specifically enhanced the TNFα-promoted cell proliferation in male PE HUVECs. In conclusion, PE downregulates miR-29a/c-3p expression and differentially dysregulates miR-29a/c-3p target genes associated with cardiovascular diseases and endothelial function in female and male fetal endothelial cells, possibly contributing to the fetal sex-specific endothelial dysfunction observed in PE. KEY POINTS: Preeclampsia differentially impairs female and male fetal endothelial cell function in responses to cytokines. Pro-inflammatory cytokines are elevated in maternal circulation during pregnancy in preeclampsia. MicroRNAs are critical regulators of endothelial cell function during pregnancy. We have previously reported that preeclampsia downregulated microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in primary fetal endothelial cells. However, it is unknown if PE differentially dysregulates the expression of miR-29a/c-3p in female and male fetal endothelial cells. We show that preeclampsia downregulates miR-29a/c-3p in male and female HUVECs and preeclampsia dysregulates cardiovascular disease- and endothelial function-associated miR-29a/c-3p target genes in HUVECs in a fetal sex-specific manner. MiR-29a/c-3p differentially mediate cell responses to cytokines in female and male fetal endothelial cells from preeclampsia. We have revealed fetal sex-specific dysregulation of miR-29a/c-3p target genes in fetal endothelial cells from preeclampsia. This differential dysregulation may contribute to fetal sex-specific endothelial dysfunction in offspring born to preeclamptic mothers.


Assuntos
Doenças Cardiovasculares , MicroRNAs , Pré-Eclâmpsia , Doenças Vasculares , Adulto , Gravidez , Criança , Humanos , Masculino , Feminino , Pré-Eclâmpsia/genética , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Doenças Cardiovasculares/metabolismo , Citocinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Doenças Vasculares/metabolismo
14.
Biomed Mater ; 18(5)2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37369219

RESUMO

The skin is the body's first line of defence, and its physiology is complex. When injury occurs, the skin goes through a complex recovery process, and there is the risk of developing a chronic wound. Therefore, proper wound care is critical during the healing process. In response to clinical needs, wound dressings have been developed. There are several types of wound dressings available for wound healing, but there are still many issues to overcome. With its high controllability and resolution, three-dimensional (3D) printing technology is widely regarded as the technology of the next global industrial and manufacturing revolution, and it is a key driving force in the development of wound dressings. Here, we briefly introduce the wound healing mechanism, organize the history and the main technologies of 3D bioprinting, and discuss the application as well as the future direction of development of 3D bioprinting technology in the field of wound dressings.


Assuntos
Bioimpressão , Pele , Bandagens , Cicatrização , Impressão Tridimensional
15.
Plants (Basel) ; 12(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176839

RESUMO

The trade-offs between key functional traits in plants have a decisive impact on biomass production. However, how precipitation and nutrient deposition affect the trade-offs in traits and, ultimately, productivity is still unclear. In the present study, a mesocosm experiment was conducted to explore the relationships between biomass production and the aboveground and belowground key functional traits and their trade-offs under changes in precipitation and nutrient depositions in Leymus chinensis, a monodominant perennial rhizome grass widespread in the eastern Eurasian steppe. Our results showed that moisture is the key factor regulating the effect of nitrogen (N) and phosphorus (P) deposition on increased biomass production. Under conditions of average precipitation, water use efficiency (WUE) was the key trait determining the biomass of L. chinensis. There were obvious trade-offs between WUE and leaf area, specific leaf area, leaf thickness, and leaf dry matter. Conversely, under increasing precipitation, the effect of restricted soil water on leaf traits was relieved; the key limiting trait changed from WUE to plant height. These findings indicate that the shift of fundamental traits of photosynthetic carbon gain induced by precipitation under N and P deposition is the key ecological driving mechanism for the biomass production of typical dominant species in semi-arid grassland.

16.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993536

RESUMO

Introduction: Preeclampsia (PE) differentially impairs female and male fetal endothelial cell function which is associated with the increased risks of adult-onset cardiovascular disorders in children born to mothers with PE. However, the underlying mechanisms are poorly defined. We hypothesize that dysregulation of microRNA-29a-3p and 29c-3p (miR-29a/c-3p) in PE disturbs gene expression and cellular responses to cytokines in fetal endothelial cells in a fetal sex-dependent manner. Methods: RT-qPCR analysis of miR-29a/c-3p was performed on female and male unpassaged (P0) human umbilical vein endothelial cells (HUVECs) from normotensive (NT) and PE pregnancies. Bioinformatic analysis of an RNAseq dataset was performed to identify PE-dysregulated miR-29a/c-3p target genes in female and male P0-HUVECs. Gain- and loss-of-function assays were conducted to determine the effects of miR-29a/c-3p on endothelial monolayer integrity and proliferation in response to TGFß1 and TNFα in NT and PE HUVECs at passage 1. Results: PE downregulated miR-29a/c-3p in male, but not female P0-HUVECs. PE dysregulated significantly more miR-29a/c-3p target genes in female vs. male P0-HUVECs. Many of these PE-differentially dysregulated miR-29a/c-3p target genes are associated with critical cardiovascular diseases and endothelial functions. We further demonstrated that miR-29a/c-3p knockdown specifically recovered the PE-abolished TGFß1-induced strengthening of endothelial monolayer integrity in female HUVECs, while miR-29a/c-3p overexpression specifically enhanced the TNFα-promoted cell proliferation in male PE HUVECs. Conclusions: PE differentially dysregulates miR-29a/c-3p and their target genes associated with cardiovascular diseases- and endothelial function in female and male fetal endothelial cells, possibly contributing to the fetal sex-specific endothelial dysfunction observed in PE.

17.
J Anim Sci Biotechnol ; 14(1): 21, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36732836

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) regulate numerous biological processes, including adipogenesis. Research on adipogenesis will assist in the treatment of human metabolic diseases and improve meat quality in livestock, such as the content of intramuscular fat (IMF). However, the significance of lncRNAs in intramuscular adipogenesis remains unclear. This research aimed to reveal the lncRNAs transcriptomic profiles in the process of bovine intramuscular adipogenesis and to identify the lncRNAs involved in the adipogenesis of bovine intramuscular adipocytes. RESULTS: In this research, a landscape of lncRNAs was identified with RNA-seq in bovine intramuscular adipocytes at four adipogenesis stages (0 d, 3 d, 6 d, and 9 d after differentiation). A total of 7035 lncRNAs were detected, including 3396 novel lncRNAs. Based on the results of differential analysis, co-expression analysis, and functional prediction, we focused on the bovine intramuscular adipogenesis-associated long non-coding RNA (BIANCR), a novel lncRNA that may have an important regulatory function. The knockdown of BIANCR inhibited proliferation and promoted apoptosis of intramuscular preadipocytes. Moreover, BIANCR knockdown inhibited intramuscular adipogenesis by regulating the ERK1/2 signaling pathway. CONCLUSION: This study obtained the landscape of lncRNAs during adipogenesis in bovine intramuscular adipocytes. BIANCR plays a crucial role in adipogenesis through the ERK1/2 signaling pathway. The results are noteworthy for improving beef meat quality, molecular breeding, and metabolic disease research.

18.
ACS Appl Mater Interfaces ; 15(1): 662-676, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562696

RESUMO

Noncompressible hemorrhage is a major cause of posttrauma death and occupies the leading position among potentially preventable trauma-associated deaths. Recently, multiple studies have shown that strongly adhesive materials can serve as hemostatic materials for noncompressible hemorrhage. However, the risk of severe tissue adhesion limits the use of adhesive hydrogels as hemostatic materials. Here, we report a promising material system comprising an injectable sol and liquid spray as a potential solution. Injectable sol is mainly composed of gelatin (GEL) and sodium alginate (SA), which possess hemostasis and adhesive properties. The liquid spray component, a mixture of tannic acid (TA) and calcium chloride (CaCl2), rapidly forms an antibacterial, antiadhesive and smooth film structure upon contact with the sol. In vitro and in vivo experiments demonstrated the bioabsorbable, biocompatible, antibacterial, and antiadhesion properties of the in situ forming hydrogel with a sol-spray system. Importantly, the addition of tranexamic acid (TXA) enhanced hemostatic performance in noncompressible areas and in deep wound hemorrhage. Our study offers a new multifunctional hydrogel system to achieve noncompressible hemostasis.


Assuntos
Hemostáticos , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Hemostasia , Hemostáticos/farmacologia , Hemostáticos/química , Hemorragia/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/química
19.
Front Bioeng Biotechnol ; 11: 1335211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264581

RESUMO

Uncontrollable haemorrhage from deep, noncompressible wounds remains a persistent and intractable challenge, accounting for a very high proportion of deaths in both war and disaster situations. Recently, injectable hydrogels have been increasingly studied as potential haemostatic materials, highlighting their enormous potential for the management of noncompressible haemorrhages. In this review, we summarize haemostatic mechanisms, commonly used clinical haemostatic methods, and the research progress on injectable haemostatic hydrogels. We emphasize the current status of injectable hydrogels as haemostatic materials, including their physical and chemical properties, design strategy, haemostatic mechanisms, and application in various types of wounds. We discuss the advantages and disadvantages of injectable hydrogels as haemostatic materials, as well as the opportunities and challenges involved. Finally, we propose cutting-edge research avenues to address these challenges and opportunities, including the combination of injectable hydrogels with advanced materials and innovative strategies to increase their biocompatibility and tune their degradation profile. Surface modifications for promoting cell adhesion and proliferation, as well as the delivery of growth factors or other biologics for optimal wound healing, are also suggested. We believe that this paper will inform researchers about the current status of the use of injectable haemostatic hydrogels for noncompressible haemorrhage and spark new ideas for those striving to propel this field forward.

20.
Int J Biol Macromol ; 223(Pt A): 916-930, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375665

RESUMO

DNA methylation (5mC) and mRNA N6-methyladenosine (m6A) play an essential role in gene transcriptional regulation. DNA methylation has been well established to be involved in skeletal muscle development. Interacting regulatory mechanisms between DNA methylation and mRNA m6A modification have been identified in a variety of biological processes. However, the effect of m6A on skeletal muscle differentiation and the underlying mechanisms are still unclear. It is also unknown whether there is an interaction between DNA methylation and mRNA m6A modification in skeletal myogenesis. In the present study, we used m6A-IP-qPCR, LC-MS/MS and dot blot assays to determine that the DNA demethylase gene, TET1, exhibited increased m6A levels and decreased mRNA expression during bovine skeletal myoblast differentiation. Dual-luciferase reporter assays and RIP experiments demonstrated that METTL3 suppressed TET1 expression by regulating TET1 mRNA stability in a m6A-YTHDF2-dependent manner. Furthermore, TET1 mediated DNA demethylation of itself, MYOD1 and MYOG, thereby stimulating their expression to promote myogenic differentiation. Ectopic expression of TET1 rescued the effect of METTL3 knockdown on reduced myotubes. In contrast, TET1 knockdown impaired the myogenic differentiation promoted by METTL3 overexpression. Moreover, ChIP experiments found that TET1 could bind and demethylate METTL3 DNA, which enhanced METTL3 expression. In addition, TET1 knockdown decreased m6A levels. ChIP assays also showed that TET1 knockdown contributed to the binding of H3K4me3 and H3K27me3 to METTL3 DNA. Our results revealed a negative feedback regulatory loop between TET1 and METTL3 in myoblast differentiation, which unveiled the interplay among DNA methylation, RNA methylation and histone methylation in skeletal myogenesis.


Assuntos
Metiltransferases , Espectrometria de Massas em Tandem , Bovinos , Animais , Cromatografia Líquida , Metiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA