Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Front Public Health ; 12: 1419344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086796

RESUMO

Objectives: The emergency response to the COVID-19 pandemic may disrupt hospital management activities of antimicrobial resistance (AMR). This study aimed to determine the changing AMR trend over the period in China when stringent COVID-19 response measures were implemented. Methods: This retrospective study was conducted in a designated hospital for COVID-19 patients in Guangzhou, China from April 2018 to September 2021. The prevalence of 13 antimicrobial-resistant bacteria was compared before and after the COVID-19 responses through Chi-square tests. Interrupted time series (ITS) models on the weekly prevalence of AMR were established to determine the changing trend. Controlled ITS models were performed to compare the differences between subgroups. Results: A total of 10,134 isolates over 1,265 days were collected. And antimicrobial-resistant strains presented in 38.6% of the testing isolates. The weekly AMR prevalence decreased by 0.29 percentage point (95% CI [0.05-0.80]) after antimicrobial stewardship (AMS) policy, despite an increase in the prevalence of penicillin-resistant Streptococcus pneumoniae (from 0/43 to 15/43, p < 0.001), carbapenem-resistant Escherichia coli (from 20/1254 to 41/1184, p = 0.005), and carbapenem-resistant Klebsiella pneumoniae (from 93/889 to 114/828, p = 0.042). And the changing trend did not vary by gender (male vs. female), age (<65 vs. ≥65 years), service setting (outpatient vs. inpatient), care unit (ICU vs. non-ICU), the primary site of infection (Lung vs. others), and Gram type of bacteria (positive vs. negative). Conclusion: The response to COVID-19 did not lead to an increase in overall AMR; however, it appears that management strategy on the prudent use of antimicrobials likely contributed to a sizable long-term drop. The frequency of several multidrug-resistant bacteria continues to increase after the COVID-19 epidemic. It is crucial to continue to monitor AMR when COVID-19 cases have surged in China after the relaxation of restriction measures.


Assuntos
Gestão de Antimicrobianos , COVID-19 , Infecção Hospitalar , Análise de Séries Temporais Interrompida , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , China/epidemiologia , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Antibacterianos/uso terapêutico , SARS-CoV-2 , Masculino , Farmacorresistência Bacteriana , Feminino , Prevalência , Pandemias , Pessoa de Meia-Idade
2.
Vaccine ; 42(21): 126182, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116486

RESUMO

OBJECTIVES: This study was to assess the lot-to-lot consistency, immunogenicity and safety of three manufacturing lots of a quadrivalent inactivated influenza vaccine (IIV4). METHODS: A randomized, double-blind, phase IV clinical trial was conducted in healthy children, adolescents and adults aged 9-59 years in Guizhou Province, China. Eligible participants were enrolled and randomized into three groups in a ratio of 1:1:1 to receive a single dose of one of three manufacturing lots of IIV4. Serum samples were collected before and 28 days after vaccination for hemagglutination inhibition (HI) antibody testing. Safety data were collected for up to 28 days after vaccination. The primary objective was to evaluate the lot-to-lot consistency of immune response as assessed by the geometric mean titer (GMT) of HI antibody at 28 days after vaccination. RESULTS: Between November 27, 2022 and December 18, 2022, 1260 eligible participants were enrolled, with similar participant demographics among groups. Immune responses after vaccination were comparable across groups, with the 95% confidence intervals (CIs) of GMT ratios for all 4 strains falling into the equivalence criterion of (0.67, 1.5). The seroconversion rates (SCRs) and seroprotection rates (SPRs) met the US Center or Biologics Evaluation and Research (CBER) criteria for all strains for each lot (lower limit of 95% CI of SCR ≥ 40% and SPR ≥ 70%). The incidences of solicited and unsolicited adverse reactions were similar among three groups, most of which (91.9%) were mild or moderate in severity. A total of 11 serious adverse events were reported during the study, and all were considered unrelated to vaccination. CONCLUSION: The three manufacturing lots of IIV4 demonstrated consistent immunogenicity. IIV4 can elicit satisfactory immune responses for all four strains and no safety concerns were identified. CLINICAL TRIAL REGISTRATION: Identifier No. NCT05512494.

3.
Sci Rep ; 14(1): 17812, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090292

RESUMO

Chemotherapy, particularly with oxaliplatin, is a key treatment for advanced gastric cancer (GC), and exosomes derived from human bone marrow mesenchymal stem cells (hBM-MSCs) play a vital role in the tumor microenvironment. The study aims to elucidate the previously unexplored role of exosomes derived from hBM-MSCs in GC tumorigenesis, especially under the influence of chemotherapy. We conducted an experimental study, utilizing miRNA sequencing and biological experiments, to analyze the tumorigenicity of exosomal miR-424-3p secreted by hBM-MSCs and its target gene RHOXF2 in GC cell lines. The results were confirmed through experimentation using a xenograft mouse model. This study demonstrated the role of hBM-MSCs in the GC microenvironment, focusing on their epithelial-mesenchymal transition (EMT) facilitation through exosomes, which led to enhanced tumorigenicity in GC cells. Intriguingly, this pro-tumor effect was abrogated when hBM-MSCs were treated with oxaliplatin. Exosomal miRNA sequencing revealed that oxaliplatin can upregulate the levels of miR-424-3p in exosomes secreted by hBM-MSCs, thereby inhibiting the EMT process in GC cells. Furthermore, miR-424-3p was identified to target and downregulate RHOXF2 expression, impeding the malignant behavior of GC cells both in vitro and in the mouse model. These findings uncover a potential hidden mechanism of oxaliplatin's anti-tumor action and propose the delivery of miR-424-3p via exosomes as a promising avenue for anti-tumor therapy.


Assuntos
Transição Epitelial-Mesenquimal , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Oxaliplatina , Neoplasias Gástricas , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Oxaliplatina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Exossomos/genética , Animais , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Camundongos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Regulação para Cima , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Microambiente Tumoral , Camundongos Nus , Progressão da Doença
4.
Mol Divers ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39097862

RESUMO

The deep molecular generative model has recently become a research hotspot in pharmacy. This paper analyzes a large number of recent reports and reviews these models. In the central part of this paper, four compound databases and two molecular representation methods are compared. Five model architectures and applications for deep molecular generative models are emphatically introduced. Three evaluation metrics for model evaluation are listed. Finally, the limitations and challenges in this field are discussed to provide a reference and basis for developing and researching new models published in future.

5.
Int J Biol Macromol ; : 134616, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127280

RESUMO

Arabinogalactan exhibits many biological activities, which is the candidate for functional food ingredients. However, there is limited research on the arabinogalactan from Moringa Oleifera leaf, and its structure needs to be more accurately characterized. This study investigated structural characteristics and immunomodulatory activity of a high-purity polysaccharide from Moringa oleifera leaf (i.e. MOLP-PE) to further explore arabinogalactan from Moringa Oleifera Lam. leaf and its potential application area. The results showed that MOLP-PE was a unique type II arabinogalactan: the main chain consisted of → 3, 4)-α-D-Galp-(1→, →3)-ß-D-Galp-(1→ and →2, 4)-ß-D-Rhap-(1→, with branches at the C-4 position of →3, 4)-α-D-Galp-(1→ and →2, 4)-ß-D-Rhap-(1→, consisting of →5)-α-L-Araf-(1→, →3)-α-L-Araf-(1→, →6)-ß-D-Galp-(1→ and →4)-ß-D-GalpA-(1→. Compared with arabinogalactan from larch, galactan and arabinan, MOLP-PE exhibited stronger ability in stimulating proliferation, phagocytosis and cytokines release of macrophages and bound with Toll-like receptor 4 closer via more binding sites, which might be due to its higher contents of 1,3-linked-Galp and 1,5-linked-Araf. These findings elucidated that MOLP-PE, as type II arabinogalactan with a unique structure, could be exploited as an immunomodulatory food ingredient.

6.
Reprod Toxicol ; 129: 108679, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121979

RESUMO

This study aimed to investigate the protective effects of glucose selenol on cadmium (Cd)-induced testicular toxicity. Twenty-four male Sprague-Dawley (SD) rats were randomly divided into four groups. Cd was administered orally at a dose of 40 mg/L or in combination with orally administered glucose selenol at doses of 0.15 mg/L and 0.4 mg/L for 30 days. The results showed that sperm quality decreased and testicular tissue was damaged in the Cd group; Glucose selenol significantly attenuated the negative effects by improving sperm quality and reducing testicular damage. Transcriptome sequencing analysis showed that Cd stress affected spermatogenesis, sperm motility, oxidative stress, blood-testis barrier and protein metabolism. Four clusters were obtained using the R Mfuzz package, which clustered highly expressed genes under different administrations, and 36 items were enriched. Notably, protein phosphorylation was enriched in the Cd group and is considered to play a key role in the response to Cd stress. We identified fifty-six target selenium (Se) and Cd co-conversion differentially expressed genes (DEGs), including three genes relating to spermatogenesis (Dnah8, Spata31d1b, Spata31d1c). In addition, the obtained DEGs were used to construct a protein-protein interaction network, co-processed with Se and Cd, and 5 modules were constructed. Overall, the analyses of rat testicular physiology and gene expression levels offer new insights into the reproductive toxicity of Cd in rats, and provide potential application prospects for glucose selenol in alleviating the impact of Cd-induced testicular damage.

7.
Mol Cancer Ther ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162031

RESUMO

Pyruvate dehydrogenase complex is a crucial enzyme involved in the oxidation of glucose. It is regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. Studies have demonstrated that pyruvate dehydrogenase kinase 1 (PDHK1), a key enzyme in glucose metabolism, behaves like oncogenes. It is highly expressed in tumors and is associated with poor patient prognosis. However, there is limited research on how PDHK1 affects immune cell function. We have established a model of natural killer (NK) cell exhaustion to investigate the impact of dichloroacetate (DCA) on NK cell function. The production of Granzyme B, IFN-γ, TNF-α, and CD107a by NK cells was explored by flow cytometry. The real-time live cell imaging system was used to monitor the ability of NK cells against tumor cells. The Seahorse analyzer was utilized to measure the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of NK cells. The mouse model was used to investigate the potential of combining DCA with adjuvant NK cell infusion. Our study demonstrated that the hepatocellular carcinoma (HCC) microenvironment mediated NK cellular exhaustion, high expression of PDHK1 and reduced cytokine secretion. We discovered that the PDHK1 inhibitor DCA enhances the activity and function of exhausted NK cells infiltrating the tumor microenvironment. Furthermore, in a subcutaneous HCC mouse model, DCA combined with NK cell treatment resulted in retarding cancer progression. This study indicates the potential of DCA in rescuing NK cell exhaustion and eliciting anti-tumor immunity.

8.
J Transl Med ; 22(1): 771, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148053

RESUMO

BACKGROUND: Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS: A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS: Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3ß signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION: Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.


Assuntos
Apoptose , Sobrevivência Celular , Metilidrazinas , Mitocôndrias , Neurônios , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Fármacos Neuroprotetores/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Metilidrazinas/farmacologia , Metilidrazinas/uso terapêutico , Isquemia Encefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
9.
J Surg Educ ; 81(10): 1339-1345, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39153329

RESUMO

OBJECTIVE: This study employed a randomized controlled trial to assess the efficacy of virtual-reality (VR) simulators and physical model simulators on colonoscopy training to explore the optimal and evidence-based simulation training. DESIGN: Forty participants were divided into 2 groups and randomized as dyads: the VR simulator group and the physical model simulator group. All the participants performed a baseline test through porcine colonoscopy. After a 6 h simulation training, each participant underwent a post-test on a pig after bowel preparation, and the procedures were video-recorded. Both the baseline test and the post-test were blindly assessed by 2 experienced assistant director physicians based on the GAGES-C scoring system. SETTING: Simulation center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai. PARTICIPANTS: Forty surgical residents without colonoscopy experience. RESULTS: Both the VR simulator group and the physical model simulator group improved significantly over the baseline test. The VR simulator group performed significantly better than the physical model simulator group, p=0.042. The participants in both groups expressed a high level of simulator satisfaction. CONCLUSIONS: Novice residents can benefit from both VR simulators and physical model simulators. The VR simulator was shown to be more effective for colonoscopy training. VR simulators were more recommended for novices conducting basic colonoscopy training.

10.
Clin Chim Acta ; : 119927, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153656

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infects over 50% of the global population and is a significant risk factor for gastric cancer. The pathogenicity of H. pylori is primarily attributed to virulence factors such as vacA. Timely and accurate identification, along with genotyping of H. pylori virulence genes, are essential for effective clinical management and controlling its prevalence. METHODS: In this study, we developed a dual-target RAA-LFD assay for the rapid, visual detection of H. pylori genes (16 s rRNA, ureA, vacA m1/m2), using recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD) methods. Both 16 s rRNA and ureA were selected as identification genes to ensure reliable detection accuracy. RESULTS: A RAA-LFD assay was developed to achieve dual-target amplification at a stable 37 °C within 20 min, followed by visualization using the lateral flow dipstick (LFD). The whole process, from amplification to results, took less than 30 min. The 95 % limit of detection (LOD) for 16 s rRNA and ureA, vacA m1, vacA m2 were determined as 3.8 × 10-2 ng/µL, 5.8 × 10-2 ng/µL and 1.4 × 10-2 ng/µL, respectively. No cross-reaction was observed in the detection of common pathogens including Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis, showing the assay's high specificity. In the evaluation of the clinical performance of the RAA-LFD assay. A total of 44 gastric juice samples were analyzed, immunofluorescence staining (IFS) and quantitative polymerase chain reaction (qPCR) were used as reference methods. The RAA-LFD results for the 16 s rRNA and ureA genes showed complete agreement with qPCR findings, accurately identifying H. pylori infection as confirmed by IFS in 10 out of the 44 patients. Furthermore, the assay successfully genotyped vacA m1/m2 among the positive samples, showing complete agreement with qPCR results and achieving a kappa (κ) value of 1.00. CONCLUSION: The dual-target RAA-LFD assay developed in this study provides a rapid and reliable method for detecting and genotyping H. pylori within 30 min, minimizing dependency on sophisticated laboratory equipment and specialized personnel. Clinical validation confirms its efficacy as a promising tool for effectively control of its prevalence and aiding in the precise treatment of H. pylori-associated diseases.

11.
RSC Adv ; 14(33): 23606-23620, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39077309

RESUMO

The cost-effective and green separation of dye pollutants from wastewater is of great importance in environmental remediation. Industrial seaweed residue (SR), as a low-cost cellulose source, was used to produce carboxylated nanorized-SR (NSR) via oxalic acid (OA)-water pretreatments followed by ultrasonic disintegration. Fourier transform infrared spectroscopy, X-ray polycrystalline diffraction, nitrogen isotherms, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, X-ray photoelectron spectrometry, particle charge detection, zeta potential and retro titration experiments were utilized to explore the physiochemical properties of samples. The NSRs with carboxyl content of 4.58-6.73 mmol g-1 were prepared using 10-60% OA-water pretreatment. In the case of 20% OA-water pretreatment, the highest NSR yield (73.9%) and nanocellulose content (80.2%) were obtained. Through self-assembly induced by the electrostatic interaction, magnetic NSR composite adsorbents (MNSRs) were prepared with the combination of NSR and Fe3O4 nanoparticles (NPs). The carboxylated NSR with negative charge demonstrated good affinity for Fe3O4 NPs. The Fe3O4 NPs were perfectly microencapsulated with the NSR when the NSR/Fe3O4 mass ratio was higher than 1/1. The adsorption properties of the MNSR for methylene blue (MB) removal from aqueous solution were investigated. The adsorbent with NSR/Fe3O4 mass ratio of 1/1 (MNSR1/1) exhibited optimum performance in terms of the magnetic properties and adsorption capacity. The MNSR1/1 showed high adsorption ability in a pH ≥7 environment. According to the Langmuir fitting, the maximum adsorption capacity of MNSR1/1 for MB reached 184.25 mg g-1. The adsorption of MB complies with the pseudo-second-order kinetic model. MNSR1/1 still maintained good adsorption properties after the fifth cycle of adsorption-desorption. MNSR1/1 could selectively adsorb cationic dye (i.e., MB and methyl violet) from wastewater, with hydrogen bonding and electrostatic interaction as the main force.

12.
Front Immunol ; 15: 1428920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015566

RESUMO

Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Ferroptose , Mitocôndrias , Neoplasias , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Mitocôndrias/metabolismo , Animais , Metástase Neoplásica
13.
Inorg Chem ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031080

RESUMO

Improving the water stability of metal-organic frameworks (MOFs) is essential for their use in water pollution treatment and environmental remediation, though it remains technically challenging. Herein, we report a novel cationic MOF constructed with [Th6O4(OH)4(COO)12] units and [CoN4·Cl2] units possessing a ftw-type topology (denoted as 1-Th-Co). 1-Th-Co itself exhibited poor water stability but excellent stability following a palladium(II) modulation strategy. Experimental studies reveal that Co(II) ions in 1-Th-Co were replaced by Pd(II) ions through cation exchange in N,N-diethylformamide (yielding 1-Th-Pd). The planar PdN4 units in 1-Th-Pd were responsible for improving the water stability of the framework. As a result, 1-Th-Pd offered excellent stability, fast adsorption kinetics, and high removal ratios for 99TcO4- and ReO4- (as a 99TcO4- surrogate) in contaminated water. When used in packed columns, 1-Th-Pd can dynamically capture ReO4- from groundwater. This work provides a new avenue for improving the water stability of MOFs, offering new vistas for the decontamination of aqueous solutions containing 99TcO4- and ReO4-.

14.
Heliyon ; 10(12): e32750, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975216

RESUMO

Objectives: To evaluate the impact of pay-for-performance on antimicrobial consumption and antimicrobial expenditure in a large teaching hospital in Guangzhou, China. Methods: We collected data from hospital information system from January 2018 through September 2022 in the inpatient wards. Antimicrobial consumption was evaluated using antibiotic use density (AUD) and antibiotic use rate (AUR). The economic impact of intervention was assessed by antimicrobial expenditure percentage. The data was analyzed using interrupted time series (ITS) analysis. Results: Following the implementation of the intervention, immediate decreases in the level of AUD were observed in Department of Hematology Unit 3 (ß = -66.93 DDDs/100PD, P = 0.002), Urology (ß = -32.80 DDDs/100PD, P < 0.001), Gastrointestinal Surgery Unit 3 (ß = -11.44 DDDs/100PD, P = 0.03), Cardiac Surgery (ß = -14.30 DDDs/100PD, P = 0.01), ICU, Unit 2 (ß = -81.91 DDDs/100PD, P = 0.02) and Cardiothoracic Surgery ICU (ß = -41.52 DDDs/100PD, P = 0.05). Long-term downward trends in AUD were also identified in Organ Transplant Unit (ß = -1.64 DDDs/100PD, P = 0.02). However, only Urology (ß = -6.56 DDDs/100PD, P = 0.02) and Gastrointestinal Surgery Unit 3 (ß = -8.50 %, P = 0.01) showed an immediate decrease in AUR, and long-term downward trends in AUR were observed in Pediatric ICU (ß = -1.88 %, P = 0.05) and ICU Unit 1 (ß = -0.55 %, P = 0.02). Conclusion: This study demonstrates that the adoption of pay-for-performance effectively reduces antibiotic consumption in specific departments of a hospital in Guangzhou in the short term. However, it is important to recognize that the long-term impact of such interventions is often limited. Additionally, it should be noted that the overall effectiveness of the intervention across the entire hospital was not significant.

15.
Front Med (Lausanne) ; 11: 1418800, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966532

RESUMO

Background: Potential uncertainties and overtreatment exist in adjuvant chemotherapy for triple-negative breast cancer (TNBC) patients. Objectives: This study aims to explore the performance of deep learning (DL) models in personalized chemotherapy selection and quantify the impact of baseline characteristics on treatment efficacy. Methods: Patients who received treatment recommended by models were compared to those who did not. Overall survival for treatment according to model recommendations was the primary outcome. To mitigate bias, inverse probability treatment weighting (IPTW) was employed. A mixed-effect multivariate linear regression was employed to visualize the influence of certain baseline features of patients on chemotherapy selection. Results: A total of 10,070 female TNBC patients met the inclusion criteria. Treatment according to Self-Normalizing Balanced (SNB) individual treatment effect for survival data model recommendations was associated with a survival benefit (IPTW-adjusted hazard ratio: 0.53, 95% CI, 0.32-8.60; IPTW-adjusted risk difference: 12.90, 95% CI, 6.99-19.01; IPTW-adjusted the difference in restricted mean survival time: 5.54, 95% CI, 1.36-8.61), which surpassed other models and the National Comprehensive Cancer Network guidelines. No survival benefit for chemotherapy was seen for patients not recommended to receive this treatment. SNB predicted older patients with larger tumors and more positive lymph nodes are the optimal candidates for chemotherapy. Conclusion: These findings suggest that the SNB model may identify patients with TNBC who could benefit from chemotherapy. This novel analytical approach may provide debiased individual survival information and treatment recommendations. Further research is required to validate these models in clinical settings with more features and outcome measurements.

16.
Foods ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998631

RESUMO

The effects of dynamic high-pressure microfluidization (DHPM at 400 MPa) and heat treatment (HT) on the microbial inactivation, quality parameters, and flavor components of not-from-concentrate (NFC) cucumber juice were investigated. Total aerobic bacteria, yeasts and molds were not detected in the 400 MPa-treated cucumber juice. Total phenolic content increased by 16.2% in the 400 MPa-treated cucumber juice compared to the control check (CK). The significant reduction in pulp particle size (volume peak decreasing from 100-1000 µm to 10-100 µm) and viscosity increased the stability of the cucumber juice while decreasing the fluid resistance during processing. HT decreased the ascorbic acid content by 25.9% (p < 0.05), while the decrease in ascorbic acid content was not significant after 400 MPa treatment. A total of 59 volatile aroma substances were identified by gas chromatography-ion mobility spectrometry (GC-IMS), and a variety of characteristic aroma substances (i.e., valeraldehyde, (E)-2-hexenal, (E)-2-nonenal, and (E,Z)-2,6-nonadienal, among others) were retained after treatment with 400 MPa. In this study, DHPM technology was innovatively applied to cucumber juice processing with the aim of providing a continuous non-thermal processing technology for the industrial production of cucumber juice. Our results provide a theoretical basis for the application of DHPM technology in cucumber juice production.

17.
Acta Pharmacol Sin ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030309

RESUMO

Recombinant human type 5 adenovirus (H101) is an oncolytic virus used to treat nasopharyngeal carcinoma. Owing to the deletion of the E1B-55kD and E3 regions, H101 is believed to selectively inhibit nasopharyngeal carcinoma. Whether H101 inhibits other type of tumors via different mechanisms remains unclear. In this study we investigated the effects of H101 on melanomas. We established B16F10 melanoma xenograft mouse model, and treated the mice with H101 (1 × 108 TCID50) via intratumoral injection for five consecutive days. We found that H101 treatment significantly inhibited B16F10 melanoma growth in the mice. H101 treatment significantly increased the infiltration of CD8+ T cells and reduced the proportion of M2-type macrophages. We demonstrated that H101 exhibited low cytotoxicity against B16F10 cells, but the endothelial cells were more sensitive to H101 treatment. H101 induced endothelial cell pyroptosis in a caspase-1/GSDMD-dependent manner. Furthermore, we showed that the combination of H101 with the immune checkpoint inhibitor PD-L1 antibody (10 mg/kg, i.p., every three days for three times) exerted synergic suppression on B16F10 tumor growth in the mice. This study demonstrates that, in addition to oncolysis, H101 inhibits melanoma growth by promoting anti-tumor immunity and inducing pyroptosis of vascular endothelial cells.

18.
Nano Lett ; 24(32): 9898-9905, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39007697

RESUMO

The technology of combining multiple emission centers to exploit white-light-emitting (WLE) materials by taking advantage of porous metal-organic frameworks (MOFs) is mature, but preparing undoped WLE MOFs remains a challenge. Herein, a pressure-treated strategy is reported to achieve efficient white photoluminescence (PL) in undoped [Zn(Tdc)(py)]n nanocrystals (NCs) at ambient conditions, where the Commission International del'Eclairage coordinates and color temperature reach (0.31, 0.37) and 6560 K, respectively. The initial [Zn(Tdc)(py)]n NCs exhibit weak-blue PL consisting of localized excited (LE) and planarized intramolecular charge transfer (PLICT) states. After pressure treatment, the emission contributions of LE and PLICT states are balanced by increasing the planarization of subunits, thereby producing white PL. Meanwhile, the reduction of nonradiative decay triggered by the planarized structure results in 5-fold PL enhancement. Phosphor-converted light-emitting diodes based on pressure-treated samples show favorable white-light characteristics. The finding provides a new platform for the development of undoped WLE MOFs.

19.
Acta Biomater ; 184: 323-334, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901753

RESUMO

The treatment of sepsis caused by multidrug-resistant (MDR) Gram-negative bacterial infections remains challenging. With these pathogens exhibiting resistance to carbapenems and new generation cephalosporins, the traditional antibiotic polymyxin B (PMB) has reemerged as a critical treatment option. However, its severe neurotoxicity and nephrotoxicity greatly limit the clinical application. Therefore, we designed negatively charged high-density lipoprotein (HDL) mimicking nanodiscs as a PMB delivery system, which can simultaneously reduce toxicity and enhance drug efficacy. The negative charge prevented the PMB release in physiological conditions and binding to cell membranes, significantly reducing toxicity in mammalian cells and mice. Notably, nanodisc-PMB exhibits superior efficacy than free PMB in sepsis induced by carbapenem-resistant Acinetobacter baumannii (CRAB) strains. Nanodisc-PMB shows promise as a treatment for carbapenem-resistant Gram-negative bacterial sepsis, especially caused by Acinetobacter baumannii, and the nanodiscs could be repurposed for other toxic antibiotics as an innovative delivery system. STATEMENT OF SIGNIFICANCE: Multidrug-resistant Gram-negative bacteria, notably carbapenem-resistant Acinetobacter baumannii, currently pose a substantial challenge due to the scarcity of effective treatments, rendering Polymyxins a last-resort antibiotic option. However, their therapeutic application is significantly limited by severe neurotoxic and nephrotoxic side effects. Prevailing polymyxin delivery systems focus on either reducing toxicity or enhancing bioavailability yet fail to simultaneously achieve both. In this scenario, we have developed a distinctive HDL-mimicking nanodisc for polymyxin B, which not only significantly reduces toxicity but also improves efficacy against Gram-negative bacteria, especially in sepsis caused by CRAB. This research offers an innovative drug delivery system for polymyxin B. Such advancement could notably improve the therapeutic landscape and make a significant contribution to the arsenal against these notorious pathogens.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Polimixina B , Sepse , Polimixina B/farmacologia , Polimixina B/química , Acinetobacter baumannii/efeitos dos fármacos , Animais , Infecções por Acinetobacter/tratamento farmacológico , Sepse/tratamento farmacológico , Camundongos , Nanoestruturas/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Lipoproteínas HDL/química
20.
J Immunother Cancer ; 12(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886114

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) is a double-stranded DNA oncogenic virus. Several types of solid tumors, such as nasopharyngeal carcinoma, EBV-associated gastric carcinoma, and lymphoepithelioma-like carcinoma of the lung, have been linked to EBV infection. Currently, several TCR-T-cell therapies for EBV-associated tumors are in clinical trials, but due to the suppressive immune microenvironment of solid tumors, the clinical application of TCR-T-cell therapy for EBV-associated solid tumors is limited. Figuring out the mechanism by which EBV participates in the formation of the tumor immunosuppressive microenvironment will help T cells or TCR-T cells break through the limitation and exert stronger antitumor potential. METHODS: Flow cytometry was used for analyzing macrophage differentiation phenotypes induced by EBV-infected and EBV-uninfected tumors, as well as the function of T cells co-cultured with these macrophages. Xenograft model in mice was used to explore the effects of M2 macrophages, TCR-T cells, and matrix metalloprotein 9 (MMP9) inhibitors on the growth of EBV-infected tumors. RESULTS: EBV-positive tumors exhibited an exhaustion profile of T cells, despite the presence of a large T-cell infiltration. EBV-infected tumors recruited a large number of mononuclear macrophages with CCL5 and induced CD163+M2 macrophages polarization through the secretion of CSF1 and the promotion of autocrine IL10 production by mononuclear macrophages. Massive secretion of MMP9 by this group of CD163+M2 macrophages induced by EBV infection was an important factor contributing to T-cell exhaustion and TCR-T-cell therapy resistance in EBV-positive tumors, and the use of MMP9 inhibitors improved the function of T cells cocultured with M2 macrophages. Finally, the combination of an MMP9 inhibitor with TCR-T cells targeting EBV-positive tumors significantly inhibited the growth of xenografts in mice. CONCLUSIONS: MMP9 inhibitors improve TCR-T cell function suppressed by EBV-induced M2 macrophages. TCR-T-cell therapy combined with MMP9 inhibitors was an effective therapeutic strategy for EBV-positive solid tumors.


Assuntos
Antígenos CD , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Macrófagos , Metaloproteinase 9 da Matriz , Receptores de Superfície Celular , Animais , Camundongos , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Receptores de Superfície Celular/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA