Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Polymers (Basel) ; 16(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256997

RESUMO

Polylactic acid (PLA) has attracted much attention in bone tissue engineering due to its good biocompatibility and processability, but it still faces problems such as a slow degradation rate, acidic degradation product, weak biomineralization ability, and poor cell response, which limits its wider application in developing bone scaffolds. In this study, Mg(OH)2 nanoparticles were employed as a versatile nanofiller for developing PLA/Mg(OH)2 composite bone scaffolds using fused deposition modeling (FDM) 3D printing technology, and its mechanical, degradation, and biological properties were evaluated. The mechanical tests revealed that a 5 wt% addition of Mg(OH)2 improved the tensile and compressive strengths of the PLA scaffold by 20.50% and 63.97%, respectively. The soaking experiment in phosphate buffered solution (PBS) revealed that the alkaline degradation products of Mg(OH)2 neutralized the acidic degradation products of PLA, thus accelerating the degradation of PLA. The weight loss rate of the PLA/20Mg(OH)2 scaffold (15.40%) was significantly higher than that of PLA (0.15%) on day 28. Meanwhile, the composite scaffolds showed long-term Mg2+ release for more than 28 days. The simulated body fluid (SBF) immersion experiment indicated that Mg(OH)2 promoted the deposition of apatite and improved the biomineralization of PLA scaffolds. The cell culture of bone marrow mesenchymal stem cells (BMSCs) indicated that adding 5 wt% Mg(OH)2 effectively improved cell responses, including adhesion, proliferation, and osteogenic differentiation, due to the release of Mg2+. This study suggests that Mg(OH)2 can simultaneously address various issues related to polymer scaffolds, including degradation, mechanical properties, and cell interaction, having promising applications in tissue engineering.

2.
Int J Biol Macromol ; 242(Pt 1): 124728, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150372

RESUMO

Polylactic acid (PLA) has been extensively used as a bone scaffold material, but it still faces many problems including low biomineralization ability, weak cell response, low mechanical properties, etc. In this study, we proposed to utilize the distinctive physical, chemical and biological properties of a natural biomineral with organic matrix, pearl powder, to enhance the overall performance of PLA bone scaffolds. Porous PLA/pearl composite bone scaffolds were prepared using fused deposition modeling (FDM) 3D printing technology, and their comprehensive performance was investigated. Macro- and micro- morphological observation by the optical camera and scanning electron microscopy (SEM) showed the 3D printed scaffolds have interconnected and ordered periodic porous structures. Phase analysis by X-ray diffraction (XRD) indicated pearl powder was well composited with PLA without impurity formation during the melt extrusion process. The mechanical test results indicated the tensile and compressive strength of PLA/pearl composite scaffolds with 10 % pearl powder content yielded the highest values, which were 15.5 % and 21.8% greater than pure PLA, respectively. The water contact angle and water absorption tests indicated that PLA/pearl showed better hydrophilicity than PLA due to the presence of polar groups in the organic matrix of the pearl powder. The results of the simulated body fluid (SBF) soaking revealed that the addition of pearl powder effectively enhanced the formation and deposition of apatite, which was attributed to the release of Ca2+ from the dissolution of pearl powder. The cell culture of bone marrow mesenchymal stem cells (BMSCs) indicated that PLA/pearl scaffolds showed better cell proliferation and osteogenic differentiation than PLA due to the stimulation of the biological organic matrix in pearl powder. These outcomes signify the potential of pearl powder as a natural biomineral containing bio-signal factors to improve the mechanical and biological properties of polymers for better bone tissue engineering application.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Osteogênese , Biomineralização , Poliésteres/farmacologia , Poliésteres/química , Engenharia Tecidual/métodos , Impressão Tridimensional
3.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047691

RESUMO

Currently, the effects of the differences between day and night temperatures (DIFs) on tea plant are poorly understood. In order to investigate the influence of DIFs on the growth, photosynthesis, and metabolite accumulation of tea plants, the plants were cultivated under 5 °C (25/20 °C, light/dark), 10 °C (25/15 °C, light/dark), and 15 °C (25/10 °C, light/dark). The results showed that the growth rate of the new shoots decreased with an increase in the DIFs. There was a downward trend in the photosynthesis among the treatments, as evidenced by the lowest net photosynthetic rate and total chlorophyll at a DIF of 15 °C. In addition, the DIFs significantly affected the primary and secondary metabolites. In particular, the 10 °C DIF treatment contained the lowest levels of soluble sugars, tea polyphenols, and catechins but was abundant in caffeine and amino acids, along with high expression levels of theanine synthetase (TS3) and glutamate synthase (GOGAT). Furthermore, the transcriptome data revealed that the differentially expressed genes were enriched in valine, leucine, and isoleucine degradation, flavone/flavonol biosyntheses, flavonoid biosynthesis, etc. Therefore, we concluded that a DIF of 10 °C was suitable for the protected cultivation of tea plants in terms of the growth and the quality of a favorable flavor of tea, which provided a scientific basis for the protected cultivation of tea seedlings.


Assuntos
Camellia sinensis , Plântula , Temperatura , Folhas de Planta/metabolismo , Fotossíntese , Camellia sinensis/genética , Chá/metabolismo
4.
J Mech Behav Biomed Mater ; 142: 105848, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099921

RESUMO

Bone scaffolds should have good biocompatibility and mechanical and biological properties, which are primarily by the material design, porous structure, and preparation process. In this study, we proposed polylactic acid (PLA) as the base material, graphene oxide (GO) as an enhancing filler, triply periodic minimal surface (TPMS) as a porous structure, and fused deposition modeling (FDM) 3D printing as a preparation technology to develop a TPMS structural PLA/GO scaffold and evaluate their porous structures, mechanical properties, and biological properties towards bone tissue engineering. Firstly, the influence of the FDM 3D printing process parameters on the forming quality and mechanical properties of PLA was studied by orthogonal experimental design, based on which the process parameters were optimized. Then, GO was composited with PLA, and PLA/GO nanocomposites were prepared by FDM. The mechanical tests showed that GO can effectively improve the tensile and compression strength of PLA; only by adding 0.1% GO the tensile and compression modulus was increased by 35.6% and 35.8%, respectively. Then, TPMS structural (Schwarz-P, Gyroid) scaffold models were designed and TPMS structural PLA/0.1%GO nanocomposite scaffolds were prepared by FDM. The compression test showed that the TPMS structural scaffolds had higher compression strength than the Grid structure; This was owing to the fact that the continuous curved structure of TMPS alleviated stress concentration and had a more uniform stress bearing. Moreover, cell culture indicated bone marrow stromal cells (BMSCs) showed better adhesion, proliferation, and osteogenic differentiation behaviors on the TPMS structural scaffolds as the continuous surface structure of TPMS had better connectivity and larger specific surface area. These results suggest that the TPMS structural PLA/GO scaffold has potential application in bone repair. This article suggests the feasibility of co-designing the material, structure, and technology for achieving the good comprehensive performance of polymer bone scaffolds.


Assuntos
Osteogênese , Alicerces Teciduais , Alicerces Teciduais/química , Porosidade , Engenharia Tecidual/métodos , Poliésteres/química , Impressão Tridimensional
5.
Front Plant Sci ; 14: 1130669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875578

RESUMO

The fruit peel color is an important factor that affects its quality. However, genes involved in regulating pericarp color in bottle gourd (Lagenaria siceraria) have not been explored to date. Genetic analysis of color traits in bottle gourd peel through a genetic population of six generations demonstrated that the green color of peels is inherited as a single gene dominant trait. Combined phenotype-genotype analysis of recombinant plants using BSA-seq mapped the candidate gene to a 22.645 Kb interval at the head end of chromosome 1. We observed that the final interval contained only one gene, LsAPRR2 (HG_GLEAN_10010973). Sequence and spatiotemporal expression analyses of LsAPRR2 unraveled two nonsynonymous mutations (A→G) and (G→C) in the parental CDS sequences. Further, LsAPRR2 expression was higher in all green-skinned bottle gourds (H16) at various stages of fruit development than in white-skinned bottle gourds (H06). Cloning and sequence comparison of the two parental LsAPRR2 promoter regions indicated 11 bases insertion and 8 SNPs mutations in the region -991~-1033, upstream of the start codon in white bottle gourd. Proof of GUS reporting system, Genetic variation in this fragment significantly reduced the expression of LsAPRR2 in the pericarp of white bottle gourd. In addition, we developed a tightly linked (accuracy 93.88%) InDel marker for the promoter variant segment. Overall, the current study provides a theoretical basis for comprehensive elucidation of the regulatory mechanisms underlying the determination of bottle gourd pericarp color. This would further help in the directed molecular design breeding of bottle gourd pericarp.

6.
Clin Rheumatol ; 42(7): 1917-1929, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36929316

RESUMO

OBJECTIVE: Interstitial lung disease (ILD) is a common extramuscular manifestation of the anti-synthetase syndrome (ASS). Patients with ASS-ILD are at risk in developing a progressive fibrosing phenotype despite appropriate treatments. This study investigated the risk factors and the predictive value of multiple risk factors for progressive pulmonary fibrosis (PPF) in patients with ASS-ILD. METHODS: Ninety patients with a diagnosis of ASS and evidence of ILD on high-resolution computed tomography (HRCT) were recruited. Among them, 72 participants completed follow-up for more than 12 months. These patients were further divided into a PPF-ASS group (n = 18) and a non-PPF-ASS group (n = 54). Logistic regression analysis was performed to investigate the risk factors for PPF. The predictive value of the combined risk factors for predicting PPF were analyzed by a ROC curve. RESULTS: The PPF-ASS group had a higher rate of positive non-Jo-1 antibodies, a significantly higher neutrophil-to-lymphocyte ratio (NLR) and serum lactate dehydrogenase (LDH), and a significantly lower PaO2/FiO2 ratio and diffusing capacity for carbon monoxide (DLCO%pred) than the non-PPF-ASS group. In addition, elevated serum Krebs von den Lungen-6 (KL-6) level and reticular opacities were significantly more common, and corticosteroid monotherapy at onset was administered more frequently in the PPF-ASS group. The median duration of follow-up was 37.4 months, survival was poorer in the PPF-ASS group, and the overall survival was 88.9%. Multivariate regression analysis further revealed that positive non-Jo-1 antibodies, NLR, and KL-6 were independent risk factors for PPF. These combined indexes had good accuracy (area under the curve = 0.874) in predicting PPF in patients with ASS-ILD. CONCLUSION: Positive non-Jo-1 antibodies, NLR, and serum KL-6 are independent risk factors for PPF in patients with ASS-ILD. Monitoring these markers can potentially predict PPF in this group of patients. Key Points • Positive non-Jo-1 antibodies, NLR, and serum KL-6 are independent risk factors associated with PPF in patients with ASS-ILD. • Monitoring non-Jo-1 antibodies, NLR, and serum KL-6 can potentially predict PPF in patients with ASS-ILD.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Ligases , Fibrose Pulmonar/complicações , Estudos Retrospectivos , Fatores de Risco , Humanos
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(10): 880-885, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36163618

RESUMO

Objective To investigate the protective effect and mechanism of recombinant human interleukin 35(rhIL-35) on coronary artery injury in Kawasaki disease (KD). Methods Human coronary artery endothelial cells (HCAECs) were cultured in vitro to establish KD vascular model. Tumor necrosis factor α(TNF-α) and the serum of KD patients stimulated HCAECs were used to mimic the local inflammatory lesions of KD. The cells were divided into control group, TNF-α and KD serum stimulation group, (25, 50) ng/mL rhIL-35 treatment group. Cell proliferation was detected by CCK-8 assay; mRNA levels of IL-1ß, IL-6, IL-17A and zonula occludens-1(ZO-1) of HCAECs were detected by real-time quantitative PCR; IL-35 expression in plasma and IL-1ß, IL-6 and IL-17A content in HCAEC supernatant were tested by ELISA; Western blot was performed to detect the expression of nuclear factor κB p65 (NF-κB p65) and ZO-1. Results TNF-α and KD serum inhibited the proliferation of HCAECs, while rhIL-35 significantly reversed the above effects. RhIL-35 significantly down-regulated the expression of IL-1ß, IL-6 and IL-17A after preconditioning HCAECs. Compared with TNF-α and KD serum stimulation group, rhIL-35 pretreated cells could significantly increase ZO-1 protein expression and inhibit NF-κB p65 expression. Conclusions rhIL-35 can alleviate the damage of KD coronary artery endothelial cells by inhibiting NF-κB pathway.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Humanos , Interleucina-17/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucinas/metabolismo , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes , Fator de Necrose Tumoral alfa/metabolismo
9.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948076

RESUMO

Solanum melongena L. (eggplant) bacterial wilt is a severe soil borne disease. Here, this study aimed to explore the regulation mechanism of eggplant bacterial wilt-resistance by transcriptomics with weighted gene co-expression analysis network (WGCNA). The different expression genes (DEGs) of roots and stems were divided into 21 modules. The module of interest (root: indianred4, stem: coral3) with the highest correlation with the target traits was selected to elucidate resistance genes and pathways. The selected module of roots and stems co-enriched the pathways of MAPK signalling pathway, plant pathogen interaction, and glutathione metabolism. Each top 30 hub genes of the roots and stems co-enriched a large number of receptor kinase genes. A total of 14 interesting resistance-related genes were selected and verified with quantitative polymerase chain reaction (qPCR). The qPCR results were consistent with those of WGCNA. The hub gene of EGP00814 (namely SmRPP13L4) was further functionally verified; SmRPP13L4 positively regulated the resistance of eggplant to bacterial wilt by qPCR and virus-induced gene silencing (VIGS). Our study provides a reference for the interaction between eggplants and bacterial wilt and the breeding of broad-spectrum and specific eggplant varieties that are bacterial wilt-resistant.


Assuntos
Resistência à Doença/genética , RNA-Seq , Ralstonia solanacearum , Solanum melongena/fisiologia , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Interações Hospedeiro-Patógeno , Sistema de Sinalização das MAP Quinases , Doenças das Plantas , Solanum melongena/genética , Solanum melongena/metabolismo , Solanum melongena/microbiologia
10.
J Hazard Mater ; 394: 122566, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32248032

RESUMO

In this work, using industrial waste red mud (RM) as main starting material, a simple method of mechanochemical synthesis (MCS) was introduced as a green approach to synthesize heterogeneous Fe2O3/Zn-Al layered double hydroxide (F/ZA-LDH), which could be used as a new low-cost catalyst for photo-Fenton reaction. The optimum preparation conditions of F/ZA-LDH were as follows: mass ratio of Zn(NO3)2·6H2O to RM (mZn:mRM) 2:1, dry milling time 6 h, H2O dosage 2 mL, ball-to-powder mass ratio 50:1, and milling speed 250 rpm. The effects of the synthesis conditions on the crystal structure and catalytic activity of F/ZA-LDH were analyzed. The F/ZA-LDH was characterized by XRD, TG, XPS, SEM, (HR)TEM. The characterization results showed the composite had a crystallized hydrotalcite-like structure, and the crystalline phases in the optimum F/ZA-LDH were Fe2O3 and Zn-Al LDH. A hetero-interfaces between Fe2O3 and Zn-Al LDH existed in the synthesized Fe2O3/Zn-Al LDH composite. Furthermore, the possible mechanism for F/ZA-LDH formation in the MCS process was proposed. Overall, our results provide a systematic understanding of the preparation of LDH composite through MCS using RM as main material, and our findings help to develop green technology for reusing RM.

11.
Circ Res ; 125(8): 759-772, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31462157

RESUMO

Rationale: Human umbilical cord blood (hUCB) contains diverse populations of stem/progenitor cells. Whether hUCB-derived nonhematopoietic cells would induce cardiac repair remains unknown. Objective: To examine whether intramyocardial transplantation of hUCB-derived CD45-Lin- nonhematopoietic cellular fraction after a reperfused myocardial infarction in nonimmunosuppressed rats would improve cardiac function and ameliorate ventricular remodeling. Methods and Results: Nonhematopoietic CD45-Lin- cells were isolated from hUCB. Flow cytometry and quantitative polymerase chain reaction were used to characterize this subpopulation. Age-matched male Fischer 344 rats underwent a 30-minute coronary occlusion followed by reperfusion and 48 hours later received intramyocardial injection of vehicle or hUCB CD45-Lin- cells. After 35 days, compared with vehicle-treated rats, CD45-Lin- cell-treated rats exhibited improved left ventricular function, blunted left ventricular hypertrophy, greater preservation of viable myocardium in the infarct zone, and superior left ventricular remodeling. Mechanistically, hUCB CD45-Lin- cell injection favorably modulated molecular pathways regulating myocardial fibrosis, cardiomyocyte apoptosis, angiogenesis, and inflammation in postinfarct ventricular myocardium. Rare persistent transplanted human cells could be detected at both 4 and 35 days after myocardial infarction. Conclusions: Transplantation of hUCB-derived CD45-Lin- nonhematopoietic cellular subfraction after a reperfused myocardial infarction in nonimmunosuppressed rats ameliorates left ventricular dysfunction and improves remodeling via favorable paracrine modulation of molecular pathways. These findings with human cells in a clinically relevant model of myocardial ischemia/reperfusion in immunocompetent animals may have significant translational implications.Visual Overview: An online visual overview is available for this article.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Traumatismo por Reperfusão Miocárdica/terapia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Apoptose , Linhagem Celular , Humanos , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Ratos , Ratos Endogâmicos F344 , Cordão Umbilical/citologia
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 34(12): 1091-1098, 2018 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-30626475

RESUMO

Objective To investigate the regulatory effect of miR-451a on macrophage migration inhibitory factor (MIF) and its effect on the proliferation of hepatocellular carcinoma HepG2 cells. Methods Real-time quantitative PCR was utilized to detect the expression of miR-451a and MIF mRNA in clinical liver cancer tissues. The luciferase reporter system was used to validate the regulatory relationship between miR-451a and MIF. The lentivirus overexpression vector of miR-451a was packaged to infect HepG2 cells. The expression of miR-451a and MIF mRNA was detected by real-time quantitative PCR. MIF protein level was detected by Western blotting. Cell proliferation was examined by MTT assay. Cell colony formation rate was tested by flat-plate colony formation experiment. Results The level of miR-451a was low and MIF mRNA was higher in liver cancer tissues. The luciferase reporter system showed that the intensity of the fluorescent signal was clearly weaker in MIF 3'UTR wild-type co-transfected cells with miR-451a mimics as compared with the other transfection groups. When HepG2 cells were infected with the lentivirus over-expressing miR-451a, the expression of miR-451a significantly increased; the expression of MIF significantly decreased; the cell proliferation and colony formation ability were weakened. Conclusion Overexpression of miR-451a can inhibit cell proliferation and colony formation by inhibiting MIF expression in HepG2 cells.


Assuntos
Proliferação de Células , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos
13.
Chem Commun (Camb) ; 52(62): 9668-71, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27400817

RESUMO

A facile and green method is proposed for the fabrication of bifunctional periodic mesoporous organosilicas (PMOs) using compressed CO2.

14.
Circ Res ; 118(12): 1918-1929, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27126808

RESUMO

RATIONALE: The role of interleukin (IL)-6 in the pathogenesis of cardiac myocyte hypertrophy remains controversial. OBJECTIVE: To conclusively determine whether IL-6 signaling is essential for the development of pressure overload-induced left ventricular (LV) hypertrophy and to elucidate the underlying molecular pathways. METHODS AND RESULTS: Wild-type and IL-6 knockout (IL-6(-/-)) mice underwent sham surgery or transverse aortic constriction (TAC) to induce pressure overload. Serial echocardiograms and terminal hemodynamic studies revealed attenuated LV hypertrophy and superior preservation of LV function in IL-6(-/-) mice after TAC. The extents of LV remodeling, fibrosis, and apoptosis were reduced in IL-6(-/-) hearts after TAC. Transcriptional and protein assays of myocardial tissue identified Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and signal transducer and activator of transcription 3 (STAT3) activation as important underlying mechanisms during cardiac hypertrophy induced by TAC. The involvement of these pathways in myocyte hypertrophy was verified in isolated cardiac myocytes from wild-type and IL-6(-/-) mice exposed to prohypertrophy agents. Furthermore, overexpression of CaMKII in H9c2 cells increased STAT3 phosphorylation, and exposure of H9c2 cells to IL-6 resulted in STAT3 activation that was attenuated by CaMKII inhibition. Together, these results identify the importance of CaMKII-dependent activation of STAT3 during cardiac myocyte hypertrophy via IL-6 signaling. CONCLUSIONS: Genetic deletion of IL-6 attenuates TAC-induced LV hypertrophy and dysfunction, indicating a critical role played by IL-6 in the pathogenesis of LV hypertrophy in response to pressure overload. CaMKII plays an important role in IL-6-induced STAT3 activation and consequent cardiac myocyte hypertrophy. These findings may have significant therapeutic implications for LV hypertrophy and failure in patients with hypertension.


Assuntos
Deleção de Genes , Ventrículos do Coração/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Interleucina-6/metabolismo , Disfunção Ventricular , Animais , Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Células Cultivadas , Fibrose , Ventrículos do Coração/patologia , Hipertrofia Ventricular Esquerda/genética , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
15.
J Plant Physiol ; 186-187: 50-8, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26368284

RESUMO

Previously, we found that the amelioration of photosynthetic capacity by bottle gourd (Lagenaria siceraria Standl.) rootstock in watermelon seedlings (Citrullus lanatus [Thunb.] Mansf.) with salt treatment might be closely related to the enzymes in Calvin cycle such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (Yang et al., 2012). We confirmed this and showed more details in this study that improved photosynthesis of watermelon plants by bottle gourd rootstock was associated with the decreased stomata resistance and the increased photochemical activity and photosynthetic metabolism with or without 100mM NaCl stress for 3 days. The analysis of gas exchange parameters showed that self-grafted plants suffered serious non-stomatal limitation to photosynthesis under salt stress while rootstock-grafted plants were mainly affected by stomata limitation in stress conditions. Further, results showed that NaCl stress markedly reduced the chlorophyll content, damaged the structure of photosynthetic apparatus, and inhibited photochemical activity and CO2 assimilation in self-grafted plants. In contrast, rootstock-grafting increased the chlorophyll content, especially chlorophyll b, and minimized the harmful effects on photosystem II (PSII) reaction center and the thylakoids structure induced by NaCl stress. Furthermore, rootstock-grafting enhanced the content and activity of Rubisco and thus elevated carbon fixation in the leaves of watermelon scions under salt stress. The gene expressions of enzymes related to ribulose-1,5-bisphosphate (RuBP) regeneration were also up-regulated by rootstock and this probably guaranteed the sufficient supply of RuBP for the operation of Calvin cycle in watermelon scions under salt stress. Thus, bottle gourd rootstock promoted photosynthesis by the activation of stomatal and non-stomatal abilities, especially the regulation of a variety of photosynthetic enzymes, including Rubisco in grafted watermelon plants under NaCl stress.


Assuntos
Citrullus/fisiologia , Cucurbita/fisiologia , Fotossíntese/efeitos dos fármacos , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico
16.
Soft Matter ; 11(45): 8848-55, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26395000

RESUMO

Temperature-induced vesicle to micelle transition (VMT), which has rarely been reported in cationic/cationic mixed surfactant systems, was systemically studied in a didodecyldimethylammonium bromide (DDAB)/dodecyltrimethylammonium chloride (DTAC) aqueous solution. We investigated the effect of temperature on DDAB/DTAC aqueous solutions by means of turbidity, conductivity, cryo-TEM, a UV-vis spectrophotometer, and a steady-state fluorescence spectrometer. It was found that increasing temperature could induce the transformation from the vesicle to the micelle in this cationic/cationic mixed surfactant system. The degree of transformation can be easily controlled by the operation temperature. Additionally, by adjusting the proportion of the mixed cationic/cationic systems and employing cationic surfactants with different chain-lengths, we were able to conclude that the hydrophobic tail length of the surfactant affects the aggregation behavior of cationic/cationic mixed surfactant systems as a function of temperature. It is universal to induce the transformation from the vesicle to the micelle by temperature in cationic/cationic mixed surfactant systems. A possible mechanism for the temperature-induced VMT was proposed based on the experimental results.

17.
Sci Rep ; 5: 11391, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26304855

RESUMO

Hypoxia induces plant stress, particularly in cucumber plants under hydroponic culture. In plants, calcium is involved in stress signal transmission and growth. The ultimate goal of this study was to shed light on the mechanisms underlying the effects of exogenous calcium on the mitochondrial antioxidant system, the activity of respiratory metabolism enzymes, and ion transport in cucumber (Cucumis sativus L. cv. Jinchun No. 2) roots under hypoxic conditions. Our experiments revealed that exogenous calcium reduces the level of reactive oxygen species (ROS) and increases the activity of antioxidant enzymes in mitochondria under hypoxia. Exogenous calcium also enhances the accumulation of enzymes involved in glycolysis and the tricarboxylic acid (TCA) cycle. We utilized fluorescence and ultrastructural cytochemistry methods to observe that exogenous calcium increases the concentrations of Ca(2+) and K(+) in root cells by increasing the activity of plasma membrane (PM) H(+)-ATPase and tonoplast H(+)-ATPase and H(+)-PPase. Overall, our results suggest that hypoxic stress has an immediate and substantial effect on roots. Exogenous calcium improves metabolism and ion transport in cucumber roots, thereby increasing hypoxia tolerance in cucumber.


Assuntos
Cálcio/farmacocinética , Cucumis sativus/metabolismo , Hidrolases/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Hipóxia Celular/fisiologia , Respiração Celular/fisiologia , Transporte de Íons/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
18.
Langmuir ; 31(18): 5141-6, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25897828

RESUMO

Novel multifunctional poly(ethylene oxide) (PEO) nanofibrous membrane, which contains vesicles constructed by mixed surfactant cetyltrimethylammonium bromide (CTAB)/sodium dodecylbenzenesulfonate (SDBS), has been designed as dual drug-delivery system and fabricated via the electrospinning process. 5-FU and paeonolum, which are hydrophilic and hydrophobic anticancer model drugs, can be dissolved in vesicle solution's bond water and lipid bilayer membranes, respectively. The physicochemical properties of the electrospun nanofibrous membrane were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). Drug release behaviors of the electrospun nanofibrous membrane fabricated with different molar ratio of CTAB/SDBS vesicle solution were investigated. The result showed that the releasing amount of hydrophilic drug presented an ascending release manner, while the hydrophobic one showed a descending release behavior with increasing of the molar ratio of CTAB/SDBS. Moreover, the release amount of drugs from drug delivery system can be controlled by the molar ratio of CTAB/SDBS in the vesicle solution easily and conveniently. The distinct properties can be utilized to encapsulate environmental demanding and quantificational materials.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Benzenossulfonatos/química , Cetrimônio , Compostos de Cetrimônio/química , Fluoruracila/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Difração de Raios X
19.
Soft Matter ; 11(21): 4283-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25903393

RESUMO

Temperature and pH responsiveness is important for biological applications in protein reconstitution, gene delivery and controlled drug release. The temperature and pH dual responsive self-assembly transition, vesicle-to-micelle transitions (VMTs) and micelle-to-vesicle transitions (MVTs), in dodecyl sulfonatebetaine (DSB)/sodium bis(2-ethylhexyl) sulfosuccinate (AOT) aqueous solution are investigated. Various experimental techniques including cryogenic transmission electronic microscopy, UV-vis spectroscopy, fluorescence spectroscopy, conductivity, and zeta potential were employed to verify the transformation process. Encapsulation of calcein was further applied in this study. The results showed that the self-assembly transition in DSB/AOT aqueous solution is reversible and can be controlled by temperature and pH. It is anticipated that utilizing simple stimuli methods to realize unique self-assembly behaviour in dilute aqueous solution may offer new possibilities in cancer diagnosis and therapy.

20.
Phys Chem Chem Phys ; 16(8): 3640-7, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24413812

RESUMO

Study of micelle to vesicle transition (MVT) is of great importance from both theoretical and practical points of view. In this work, we studied the effect of compressed CO2 on the aggregation behavior of zwitterionic-anionic (DSB (dodecyl sulfonatebetaine)-AOT(sodium bis(2-ethylhexyl) sulfosuccinate)) mixed surfactants in aqueous solution by means of direct observation, turbidity, steady-state fluorescence, fluorescence quantum yield, and entrapment quantity of vesicles. Interestingly, all the methods show that compressed CO2 can induce MVT in this zwitterionic-anionic surfactant system. The CO2-induced MVT is reversible and the degree of MVT can be easily tuned by controlling the operation pressure. Further studies show that the pH decrease and dissolution of gas molecules in the surfactant film co-contribute to the MVT, and a possible mechanism for the CO2-induced MVT was proposed based on the experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA