Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
J Am Chem Soc ; 146(20): 14174-14181, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723205

RESUMO

Construction of robust heterogeneous catalysts with atomic precision is a long-sought pursuit in the catalysis field due to its fundamental significance in taming chemical transformations. Herein, we present the synthesis of a single-crystalline pyrazolate metal-organic framework (MOF) named PCN-300, bearing a lamellar structure with two distinct Cu centers and one-dimensional (1D) open channels when stacked. PCN-300 exhibits exceptional stability in aqueous solutions across a broad pH range from 1 to 14. In contrast, its monomeric counterpart assembled through hydrogen bonding displays limited stability, emphasizing the role of Cu-pyrazolate coordination bonds in framework robustness. Remarkably, the synergy of the 1D open channels, excellent stability, and the active Cu-porphyrin sites endows PCN-300 with outstanding catalytic activity in the cross dehydrogenative coupling reaction to form the C-O bond without the "compulsory" ortho-position directing groups (yields up to 96%), outperforming homogeneous Cu-porphyrin catalysts. Moreover, PCN-300 exhibits superior recyclability and compatibility with various phenol substrates. Control experiments reveal the synergy between the Cu-porphyrin center and framework in PCN-300 and computations unveil the free radical pathway of the reaction. This study highlights the power of robust pyrazolate MOFs in directly activating C-H bonds and catalyzing challenging chemical transformations in an environmentally friendly manner.

2.
Adv Mater ; : e2401738, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771624

RESUMO

Metasurface holograms represent a common category of metasurface devices that utilize in-plane phase gradients to shape wavefronts, forming holographic images through the application of the generalized Snell's law (GSL). While conventional metasurfaces focus solely on phase gradients, metagratings, which incorporate higher-order wave diffraction, further expand the GSL's generality. Recent advances in certain acoustic metagratings have demonstrated an updated GSL extension capable of reversing anomalous transmission and reflection, whose reversal is characterized by the parity of the number of wave propagation trips through the metagrating. However, the current extension of GSL has remained limited to one-dimensional metagratings, unable to access two-dimensional (2D) holographic images in three-dimensional (3D) spaces. Here, we investigate the GSL extension to 2D metagratings for manipulating waves within 3D spaces. Through our analysis, we experimentally demonstrate a series of acoustic metagrating holograms. These holographic images exhibit the unique ability to switch between transmission and reflection types independently. Our study introduces an additional dimension to modern holography design and metasurface wavefront manipulation. This article is protected by copyright. All rights reserved.

3.
Phys Rev Lett ; 132(11): 113802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563911

RESUMO

Quantum Hall systems host chiral edge states extending along the one-dimensional boundary of any two-dimensional sample. In solid state materials, the edge states serve as perfectly robust transport channels that produce a quantized Hall conductance; due to their chirality, and the topological protection by the Chern number of the bulk band structure, they cannot be spatially localized by defects or disorder. Here, we show experimentally that the chiral edge states of a lossy quantum Hall system can be localized. In a gyromagnetic photonic crystal exhibiting the quantum Hall topological phase, an appropriately structured loss configuration imparts the edge states' complex energy spectrum with a feature known as point-gap winding. This intrinsically non-Hermitian topological invariant is distinct from the Chern number invariant of the bulk (which remains intact) and induces mode localization via the "non-Hermitian skin effect." The interplay of the two topological phenomena-the Chern number and point-gap winding-gives rise to a non-Hermitian generalization of the paradigmatic Chern-type bulk-boundary correspondence principle. Compared to previous realizations of the non-Hermitian skin effect, the skin modes in this system have superior robustness against local defects and disorders.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38627901

RESUMO

Further development in the area of medicinal chemistry requires facile and atom-economical C-N bond formation from readily accessible precursors using recyclable and reusable catalysts with low process toxicity. In this work, direct N-alkylation of amines with alcohols is performed with a series of Ir-phosphine-functionalized metal-organic framework (MOF) heterogeneous catalysts. The grafted monophosphine-Ir complexes were studied comprehensively to illustrate the ligand-dependent reactivity. The afforded MOF catalysts exhibited high reactivity and selectivity toward N-alkylamine product formation, especially UiO-66-PPh2-Ir, which showed 90% conversion after recycling with no catalyst residue remaining in the product after the reaction. Furthermore, analyses of the active catalyst, mechanistic studies, control experiments, and H2 adsorption tests are consistent with the conclusion that immobilization of the iridium complex on the MOF support enables the formation of the iridium-monophosphine complex and enhances its stability during the reaction. To illustrate the potential of the catalyst for application in medicinal chemistry, two pharmaceutical precursors were synthesized with up to 99% conversion and selectivity.

5.
Phys Rev Lett ; 132(15): 156602, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682981

RESUMO

Photonic Chern insulators are known for their topological chiral edge states (CESs), whose absolute existence is determined by the bulk band topology, but concrete dispersion can be engineered to exhibit various properties. For example, the previous theory suggested that the edge dispersion can wind many times around the Brillouin zone to slow down light, which can potentially overcome fundamental limitations in conventional slow-light devices: narrow bandwidth and keen sensitivity to fabrication imperfection. Here, we report the first experimental demonstration of this idea, achieved by coupling CESs with resonance-induced nearly flat bands. We show that the backscattering-immune hybridized CESs are significantly slowed down over a relatively broad bandwidth. Our work thus paves an avenue to broadband topological slow-light devices.

6.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452090

RESUMO

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Assuntos
Células-Tronco Adultas , Plasticidade Celular , Epiderme , Folículo Piloso , Tretinoína , Cicatrização , Animais , Camundongos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Rejuvenescimento/fisiologia , Técnicas de Cultura de Células , Neoplasias/patologia , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 15(1): 2293, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480697

RESUMO

Hyperbolic lattices are a new type of synthetic materials based on regular tessellations in non-Euclidean spaces with constant negative curvature. While so far, there has been several theoretical investigations of hyperbolic topological media, experimental work has been limited to time-reversal invariant systems made of coupled discrete resonances, leaving the more interesting case of robust, unidirectional edge wave transport completely unobserved. Here, we report a non-reciprocal hyperbolic network that exhibits both Chern and anomalous chiral edge modes, and implement it on a planar microwave platform. We experimentally evidence the unidirectional character of the topological edge modes by direct field mapping. We demonstrate the topological origin of these hyperbolic chiral edge modes by an explicit topological invariant measurement, performed from external probes. Our work extends the reach of topological wave physics by allowing for backscattering-immune transport in materials with synthetic non-Euclidean behavior.

8.
Nat Commun ; 15(1): 2332, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485983

RESUMO

As hypothetical topological defects in the geometry of spacetime, vortex strings could have played many roles in cosmology, and their distinct features can provide observable clues about the early universe's evolution. A key feature of vortex strings is that they can interact with Weyl fermionic modes and support massless chiral-anomaly states along strings. To date, despite many attempts to detect vortex strings in astrophysics or to emulate them in artificially created systems, observation of these vortex-string chiral modes remains experimentally elusive. Here we report experimental observations of vortex-string chiral modes using a metamaterial system. This is implemented by inhomogeneous perturbation of Yang-monopole phononic metamaterials. The measured linear dispersion and modal profiles confirm the existence of topological modes bound to and propagating along the string with the chiral anomaly. Our work provides a platform for studying diverse cosmic topological defects in astrophysics and offers applications as topological fibres in communication techniques.

9.
J Am Chem Soc ; 146(14): 9811-9818, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531024

RESUMO

Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.

10.
J Am Chem Soc ; 146(2): 1491-1500, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170908

RESUMO

3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).

11.
Adv Mater ; 36(12): e2209073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693232

RESUMO

As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.

12.
World J Surg Oncol ; 21(1): 391, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124135

RESUMO

OBJECTIVE: Lumbosacral vertebral osteoblastic metastasis is treated with percutaneous vertebroplasty (PVP) combined with 125I seed implantation and PVP alone. Compared to PVP alone, we evaluated the effects of combination therapy with PVP and 125I seed implantation on pain, physical condition, and survival and evaluated the clinical value of PVP combined with 125I particle implantation. METHODS: We retrospectively analyzed 62 patients with lumbosacral vertebral osseous metastases treated at our hospital between 2016 and 2019. All the patients met the inclusion criteria for 125I implantation, and they were randomly divided into a combined treatment group and a pure PVP surgery group. The visual analog pain scale (VAS), Karnofsky Performance Status (KPS), and survival time were recorded at different time points, including preoperative, postoperative 1 day, 1 month, 3 months, 6 months, 12 months, and 36 months in each group. The variation in clinical indicators and differences between the groups were analyzed using SPSS version 20.0. Correlations between different variables were analyzed using the nonparametric Spearman's rank test. The Kaplan-Meier method was used to estimate the relationship between survival time and KPS score, VAS score, or primary tumor progression, and survival differences were analyzed using the log-rank test. Multivariate analyses were performed using a stepwise Cox proportional hazards model to identify independent prognostic factors. RESULTS: Compared to the PVP treatment group, the pain level in the combined treatment group was significantly reduced (P = 0.000), and the patient's physical condition in the combination treatment group significantly improved. Kaplan-Meier analysis showed that the survival rate of the PVP group was significantly lower than that of the combination group (P = 0.038). We also found that the median survival of patients in both groups significantly increased with an increase in the KPS score (14 months vs. 33 months) (P = 0.020). Patients with more than three transfer sections had significantly lower survival rates than those with one or two segments of the section (P = 0.001). Further, Cox regression analysis showed that age (P = 0.002), the spinal segment for spinal metastasis (P = 0.000), and primary tumor growth rate (P = 0.005) were independent factors that affected the long-term survival of patients with lumbosacral vertebral osseous metastases. CONCLUSIONS: PVP combined 125I seeds implantation surgery demonstrated superior effectiveness compared to PVP surgery alone in treating lumbosacral vertebral osseous metastases, which had feasibility in the clinical operation. Preoperative KPS score, spine transfer section, and primary tumor growth rate were closely related to the survival of patients with lumbosacral vertebral osteoblastic metastasis. Age, spinal segment for spinal metastasis, and primary tumor growth can serve as prognostic indicators and guide clinical treatment.


Assuntos
Neoplasias da Coluna Vertebral , Vertebroplastia , Humanos , Prognóstico , Neoplasias da Coluna Vertebral/secundário , Vertebroplastia/métodos , Estudos Retrospectivos , Dor
13.
Front Neural Circuits ; 17: 1239096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033788

RESUMO

Forebrain acetylcholine (ACh) signaling has been shown to drive attention and learning. Recent experimental evidence of spatially and temporally constrained cholinergic signaling has sparked interest to investigate how it facilitates stimulus-induced learning. We use biophysical excitatory-inhibitory (E-I) multi-module neural network models to show that external stimuli and ACh signaling can mediate spatially constrained synaptic potentiation patterns. The effects of ACh on neural excitability are simulated by varying the conductance of a muscarinic receptor-regulated hyperpolarizing slow K+ current (m-current). Each network module consists of an E-I network with local excitatory connectivity and global inhibitory connectivity. The modules are interconnected with plastic excitatory synaptic connections, that change via a spike-timing-dependent plasticity (STDP) rule. Our results indicate that spatially constrained ACh release influences the information flow represented by network dynamics resulting in selective reorganization of inter-module interactions. Moreover the information flow depends on the level of synchrony in the network. For highly synchronous networks, the more excitable module leads firing in the less excitable one resulting in strengthening of the outgoing connections from the former and weakening of its incoming synapses. For networks with more noisy firing patterns, activity in high ACh regions is prone to induce feedback firing of synchronous volleys and thus strengthening of the incoming synapses to the more excitable region and weakening of outgoing synapses. Overall, these results suggest that spatially and directionally specific plasticity patterns, as are presumed necessary for feature binding, can be mediated by spatially constrained ACh release.


Assuntos
Acetilcolina , Colinérgicos , Acetilcolina/metabolismo , Colinérgicos/farmacologia , Sinapses/metabolismo , Aprendizagem , Redes Neurais de Computação , Plasticidade Neuronal
14.
Nat Commun ; 14(1): 6636, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37857622

RESUMO

Higher-order Weyl semimetals are a family of recently predicted topological phases simultaneously showcasing unconventional properties derived from Weyl points, such as chiral anomaly, and multidimensional topological phenomena originating from higher-order topology. The higher-order Weyl semimetal phases, with their higher-order topology arising from quantized dipole or quadrupole bulk polarizations, have been demonstrated in phononics and circuits. Here, we experimentally discover a class of higher-order Weyl semimetal phase in a three-dimensional photonic crystal (PhC), exhibiting the concurrence of the surface and hinge Fermi arcs from the nonzero Chern number and the nontrivial generalized real Chern number, respectively, coined a real higher-order Weyl PhC. Notably, the projected two-dimensional subsystem with kz = 0 is a real Chern insulator, belonging to the Stiefel-Whitney class with real Bloch wavefunctions, which is distinguished fundamentally from the Chern class with complex Bloch wavefunctions. Our work offers an ideal photonic platform for exploring potential applications and material properties associated with the higher-order Weyl points and the Stiefel-Whitney class of topological phases.

15.
Rev Sci Instrum ; 94(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877792

RESUMO

In order to replace the phosphor screen of a proximity-gated x-ray framing camera with a readout circuit using a time-interleaved structure, this paper carries out the design of a high-isolation RF switch. In this paper, a Metal-Oxide-Semiconductor Field Effect Tube (MOSFET) switching circuit is designed to achieve high isolation and low insertion loss at 0.5-3 GHz. This solves the problem that the switching circuit cannot be turned off properly due to the parasitic capacitance of MOSFETs in the process of RF signal transmission, resulting in signal feedthrough. It also ensures that the input signal can be transmitted to the output intact when the switching circuit is turned on. High isolation is achieved by using parallel resonance to increase the voltage division and series resonance to leak the current. The switch achieves 76 dB isolation and 0.07 dB insertion loss at 1 GHz frequency. Isolation is increased by adding parallel branches near the 2 and 3 GHz frequency points, achieving greater than 33 dB isolation from 0.5 to 3 GHz.

16.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37762662

RESUMO

The demand for rice grain quality, particularly in terms of eating and cooking quality, is increasingly concerning at present. However, the limited availability of rice-quality-related gene resources and time-consuming and inefficient traditional breeding methods have severely hindered the pace of rice grain quality improvement. Exploring novel methods for improving rice grain quality and creating new germplasms is an urgent problem that needs to be addressed. In this study, an amino-acid-transporter-encoding gene OsAAP11 (Os11g0195600) mainly expressed in endosperm was selected as the target for gene editing using the CRISPR/Cas9 system in three japonica genetic backgrounds (Wuyungeng30, Nangeng9108, and Yanggeng158, hereafter referred to as WYG30, NG9108, and YG158). We successfully obtained homozygous osaap11 mutants without transgenic insertion. Subsequently, we conducted comprehensive investigations on the agronomic traits, rice grain quality traits, and transcriptomic analysis of these mutants. The results demonstrate that loss of OsAAP11 function led to a reduced amino acid content and total protein content in grains without affecting the agronomic traits of the plants; meanwhile, it significantly increased the peak viscosity, holding viscosity, and final viscosity values during the cooking process, thereby enhancing the eating and cooking quality. This study not only provides valuable genetic resources and fundamental materials for improving rice grain quality but also provides novel technical support for the rapid enhancement of rice grain quality.


Assuntos
Oryza , Oryza/genética , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Agricultura , Culinária , Grão Comestível/genética
17.
Microbes Infect ; 25(8): 105219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37734534

RESUMO

Human parainfluenza viruses (HPIVs) are a leading cause of acute respiratory tract infections (ARTIs). Non-pharmaceutical interventions (NPIs) were widely administered to combat the pandemic of the coronavirus disease 2019 (COVID-19). Respiratory specimens were obtained from 10,454 hospitalized children with ARTIs to detect HPIV. We investigated differences in epidemiological and clinical characteristics of HPIV infections before (2017-2019) and during the COVID-19 pandemic (2020-2022). HPIVs were detected in 392 (3.75%, 392/10,454) patients, of whom 70 (17.86%), 48 (12.24%), and 274 (69.90%) were positive for HPIV1, HPIV2, and HPIV3, respectively. Detection rates of HPIV3 were higher in 2020-2022 than in 2017-2019 (3.38% vs. 2.24%). The seasonal distribution of HPIV1 showed no difference, but HPIV3 peaked between September and December during the COVID-19 pandemic, which differed from previous epidemiological patterns. Compared to the period before the COVID-19 pandemic, there has been a noticeable decrease in the incidence of asthma, moist rales, and emesis in patients infected with HPIV1 and in asthma, expectoration, and severe pneumonia in patients infected with HPIV3 during 2020-2022. The detection rates of HPIV increased in Southern China during the COVID-19 outbreak, which underlines the importance of continuous surveillance of HPIV in the next epidemic season.


Assuntos
Asma , COVID-19 , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Humanos , Pandemias , Vírus da Parainfluenza 3 Humana , COVID-19/epidemiologia , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/diagnóstico , Vírus da Parainfluenza 1 Humana , Vírus da Parainfluenza 2 Humana , Infecções Respiratórias/epidemiologia , China/epidemiologia , Asma/epidemiologia
18.
Nat Cell Biol ; 25(8): 1185-1195, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488435

RESUMO

During development, progenitors simultaneously activate one lineage while silencing another, a feature highly regulated in adult stem cells but derailed in cancers. Equipped to bind cognate motifs in closed chromatin, pioneer factors operate at these crossroads, but how they perform fate switching remains elusive. Here we tackle this question with SOX9, a master regulator that diverts embryonic epidermal stem cells (EpdSCs) into becoming hair follicle stem cells. By engineering mice to re-activate SOX9 in adult EpdSCs, we trigger fate switching. Combining epigenetic, proteomic and functional analyses, we interrogate the ensuing chromatin and transcriptional dynamics, slowed temporally by the mature EpdSC niche microenvironment. We show that as SOX9 binds and opens key hair follicle enhancers de novo in EpdSCs, it simultaneously recruits co-factors away from epidermal enhancers, which are silenced. Unhinged from its normal regulation, sustained SOX9 subsequently activates oncogenic transcriptional regulators that chart the path to cancers typified by constitutive SOX9 expression.


Assuntos
Células-Tronco Adultas , Proteômica , Animais , Camundongos , Células-Tronco Adultas/metabolismo , Diferenciação Celular , Cromatina/genética , Epigênese Genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
19.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37293114

RESUMO

Macrophages and dendritic cells have long been appreciated for their ability to migrate to and engulf dying cells and debris, including some of the billions of cells that are naturally eliminated from our body daily. However, a substantial number of these dying cells are cleared by 'non-professional phagocytes', local epithelial cells that are critical to organismal fitness. How non-professional phagocytes sense and digest nearby apoptotic corpses while still performing their normal tissue functions is unclear. Here, we explore the molecular mechanisms underlying their multifunctionality. Exploiting the cyclical bouts of tissue regeneration and degeneration during the hair cycle, we show that stem cells can transiently become non-professional phagocytes when confronted with dying cells. Adoption of this phagocytic state requires both local lipids produced by apoptotic corpses to activate RXRα, and tissue-specific retinoids for RARγ activation. This dual factor dependency enables tight regulation of the genes requisite to activate phagocytic apoptotic clearance. The tunable phagocytic program we describe here offers an effective mechanism to offset phagocytic duties against the primary stem cell function of replenishing differentiated cells to preserve tissue integrity during homeostasis. Our findings have broad implications for other non-motile stem or progenitor cells which experience cell death in an immune-privileged niche.

20.
J Environ Manage ; 344: 118477, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364489

RESUMO

Despite the potential importance of the removal of contaminated straw for heavy metal output from agricultural soils, previous studies have primarily focused on the variation in the metal concentration without considering the impact input of heavy metals from atmospheric deposition. Here, rice was grown under field conditions, and, as a reference, in a deposition-free environment, and exposed to different ambient air Cd levels. Two consecutive years of pot experiments were conducted in two study areas (ZZ and LY) to examine the changes in soil physicochemical properties as well as Cd accumulation in the soil-rice (Oryza sativa L.) system in response to straw return or removal. The results showed that rice straw return enhanced the soil pH and organic matter (OM) content, but reduced the soil redox potential (Eh); and the variation in amplitude increased with number of cultivation years. After two years of cultivation, the concentrations of soil total Cd and extractable Cd in the straw-removal treatments reduced by 9.89-29.49% and 4.88-37.74%, respectively, whereas those in the straw-return treatments exhibited a slight decrease, or even an increase. This indicated that straw removal could effectively reduce the concentration and bioavailability of Cd in contaminated farmland, which was further confirmed by the results for accumulation of Cd in rice tissues. In addition, the contribution from atmospheric deposition was confirmed by the greater variation in Cd concentration in soils and rice tissues under deposition-free conditions. A major implication of our findings is that the adoption of reasonable straw-treatment measures and proper control over ambient air heavy metals can promote the remediation efficiency of Cd-contaminated fields.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/farmacologia , Solo/química , Oryza/química , Poluentes do Solo/química , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA