RESUMO
Chronic heart failure (CHF) combined with hyperuricemia (HUA) is a comorbidity that is hard to diagnose by a single biomarker. Exosomal miRNAs are differentially expressed in cardiovascular diseases and are closely associated with regulating most biological functions. This study aimed to provide evidence for miRNA as a new molecular marker for precise diagnosis of the comorbidity of CHF with HUA and further analyze the potential targets of differentially expressed miRNA. This controlled study included 30 CHF patients combined with HUA (Group T) and 30 healthy volunteers (Group C). 6 peripheral blood samples from Group T and Group C were analyzed for exosomal miRNAs by high-throughput sequencing and then validated in the remaining 24 peripheral blood samples from Group T and Group C by applying real-time PCR (RT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software to predict the differential miRNAs' action targets. 42 differentially expressed miRNAs were detected (18 upregulated and 24 downregulated), in which miR-27a-5p was significantly upregulated (P<0.01), and miR-139-3p was significantly downregulated (P<0.01) in Group T. The combination of miR-27a-5p and miR-139-3p predicted the development of CHF combined with HUA with a maximum area under the curve (AUC) of 0.899 (95 % CI: 0.812-0.987, SEN=79.2 %, SPE=91.7 %, J value = 0.709). GO and KEGG enrichment analysis revealed that the differentially expressed miRNAs had a role in activating the AMPK-mTOR signaling pathway to activate the autophagic response. Collectively, our findings suggest that upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p can be used as a novel molecular marker for precise diagnosis of CHF combined with HUA and enhanced autophagy by AMPK-mTOR signaling pathway may be one pathogenesis of the differentially expressed miRNAs.
Assuntos
Exossomos , Insuficiência Cardíaca , Hiperuricemia , MicroRNAs , Humanos , Insuficiência Cardíaca/genética , MicroRNAs/genética , MicroRNAs/sangue , Hiperuricemia/genética , Hiperuricemia/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Exossomos/genética , Exossomos/metabolismo , Idoso , Doença Crônica , Biomarcadores/sangue , Estudos de Casos e Controles , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Transdução de Sinais/genética , Perfilação da Expressão GênicaRESUMO
Twisted grain boundary (TGB) phases exhibit highly frustrated and complex liquid crystal structures, and have attracted enormous interest because of their unique internal structure, textures and properties. However, among the few real concerns related to these interesting structures, applying them to prepare polymer-stabilized colored liquid crystal films has been challenging. Herein, the organic-inorganic hybrid silica (OIHS) films with a TGBA* structure were prepared using two organosilanes and one chiral additive under an acidic condition. The structural color of the films can be adjusted by varying the polycondensation temperature and the concentration of the chiral additive. A structurally colored pattern was prepared by the inject printing, which was suitably applied for decoration and anti-counterfeiting.
RESUMO
Ageratum conyzoides L., an invasive plant originating from South America, is characterized by rapid growth and strong ecological adaptability, posing a threat to China's ecosystems, agricultural industry, and biodiversity. In this study, we optimized the MaxEnt model using the ENMeval package and constructed an ensemble model using the Biomod2 package based on global geospatial distribution data of A. conyzoides and considering climate, soil, and topography factors. We simulated the potential suitable distribution of A. conyzoides in China at present and in the future (2041-2060, 2061-2080). Through multivariate environment similarity surface and most dissimilar variable analysis, we identified the main environmental variables influencing the distribution of A. conyzoides. Additionally, niche analysis elucidated temporal and spatial variations in A. conyzoides' climate niche. Our results demonstrate that the ensemble model, constructed from the top seven single models, outperforms the individual models in predicting the suitable habitat of A. conyzoides. The ensemble model achieved the true skill statistic (TSS) of 0.833 and the area under the subject curve (AUC) of 0.971, indicative of outstanding predictive performance. Presently, the suitable habitat of A. conyzoides in China primarily exists in the region between 18° and 28° N, covering approximately 1.47 million km2. The temperature annual range, precipitation of the wettest month, and mean temperature of the coldest quarter were identified as the primary environmental variables influencing its distribution, while soil and elevation variables had minor roles. Under future climate conditions, the suitable habitat of A. conyzoides is expected to expand northeastward, with the centroid of its habitat shifting northward as the climate warms. The migration speed of A. conyzoides is projected to increase with the degree of warming. Furthermore, the climate niche of A. conyzoides will undergo certain changes and may face both niche expansion and a decrease in niche overlap under different climate conditions.
RESUMO
This work presents a facile way to fabricate a polymer/ceramics composite gel electrolyte to improve the overall properties of lithium-ion batteries. Lithium salt-grafted silica was synthesized and mixed with P(VDF-HFP) to produce a nanofiber film by the electrostatic spinning method. After coating a layer of SiO2 onto the surface of nanofibers through a sol-gel method, a composite nanofiber film was obtained. It was then immersed in plasticizer until saturation to make a composite gel electrolyte film. Electrochemical test results showed that the obtained gel electrolyte film shows high thermal stability (~450 °C), high ionic conductivity of 1.3 × 10-3 S cm-1 at 25 °C and a lithium-ion transference number of 0.58, and superior cycling stability, providing a new direction for manufacturing secondary batteries with higher safety and performance.
RESUMO
Upconversion circularly polarized luminescence (UC-CPL) exhibits promising potential for application for anti-counterfeiting and displays. Upconversion nanoparticles (UCNPs), NaYF4:Yb,Tm, with uniform morphology and high crystallinity, were prepared via a simple solvothermal method. These UCNPs were embedded into cholesteric liquid crystal polymer network (CLCN) films. The UC-CPL performance of these films was investigated using left- and right-handed circular polarizers. After calibration, the |gcallum| values (up to 0.33) were obtained for the free-standing CLCN-UCNPs films, while a |gcallum| value of 0.43 was achieved for the CLCN-UCNPs-coated PET film. Moreover, a combined system comprising a PMMA-UCNPs layer and a CLCN layer yielded an ultra-large |gcallum| value of up to 1.73. Flexible and colourful patterned CLCN films were fabricated using photomasks, offering potential applications in anti-counterfeiting. This study not only successfully prepared UC-CPL-active materials based on CLCNs and UCNPs, but also demonstrated the chiral filtering effect of CLCN films in upconversion luminescent materials.
RESUMO
Microbial electrochemical technology (MET) represents a novel approach demonstrating promising application prospects in emerging strategic industries such as environment protection, energy saving, and sustainable energy production. Among different METs, microbial electrochemical snorkels (MES) are praised for the simple design, high flexibility, and low costs. Several pilot MESs have been employed to mitigate environmental issues in European and American countries. Despite the rapid development, only one review article on MES has been published so far. Here we review the latest achievements in this field and introduce the principles, structures, functions, and applications of MESs. Moreover, we summarize the key challenges and the future research areas in this field, aiming to give insights into the research on MESs and other METs and improve the applications of such technologies.
Assuntos
Técnicas Eletroquímicas , Recuperação e Remediação Ambiental/métodos , Fontes de Energia Bioelétrica , Bactérias/metabolismo , Bactérias/classificaçãoRESUMO
In patients with diabetes, chronic hyperglycemia impairs immune function at wound sites, increasing susceptibility to infections, prolonging inflammation, and delaying healing. This study aimed to develop wound dressings that control bacterial infections and accelerate healing. Phloretin (PHL), which has antibacterial and anti-inflammatory properties, was encapsulated with γ-cyclodextrin (γ-CD) to form a PHL@CD complex with enhanced bioavailability. This complex was incorporated into nanofiber wound dressings composed of polycaprolactone and natural silk protein. The resulting dressings exhibited favorable physical and chemical properties, including nutrient transport and gas exchange, which are essential for wound healing. The nanofiber membranes exhibited antibacterial activity against Staphylococcus aureus (90.31 ± 4.41 % inhibition), with high antioxidant capacity (91.48 ± 0.33 % ABTS scavenging) and blood compatibility. The membranes also promoted cell viability. Importantly, the nanofiber dressings accelerated wound healing in a diabetic mouse model by reducing the duration of inflammation. The novel nanofiber wound dressing can significantly improve the treatment of diabetic wounds.
RESUMO
The oxygen level in a tumor typically exhibits complex characteristics, ranging from mild hypoxia to moderate and even severe hypoxia. This poses significant challenges for the efficacy of photodynamic therapy, where oxygen is an essential element. Herein, we propose a novel therapeutic strategy and develop a series of lipid droplet-targeting photosensitive dyes (Ser-TPAs), i.e., in situ synergistic activation of two different electron transfer-type reactions. Based on this strategy, Ser-TPAs can synergistically generate O2Ë- and nitrogen radicals regardless of the oxygen content, which results in a sustained high concentration of strongly oxidizing substances in the lipid droplets of cancer cells. As such, Ser-TPAs exhibited inhibitory activity against tumor growth in vivo, resulting in a significant reduction in tumor volume (V experimental group : V control group ≈ 0.07). This strategy offers a conceptual framework for the design of innovative photosensitive dyes that are suitable for cancer therapy in complex oxygen environments.
RESUMO
Twelve liquid crystalline polymer network films were fabricated through photopolymerization of cholesteric liquid-crystalline mixtures containing two aggregation-induced emissive-active luminogens. The films exhibit multicolour and white circularly polarized luminescence with dissymmetry factors up to 0.85 and fluorescence quantum yields up to 90%.
RESUMO
Friction stir processing (FSP) manufacturing technology was used to fabricate medium Mn advanced high-strength steel in this study. The mechanical properties and microstructure of the steel fabricated using FSP were investigated. The steel obtained a total elongation of 35.1% and a tensile strength of 1034.6 MPa, which is about 59% higher than that of the steel without FSP. After FSP, a gradient structure occurs along the thickness direction. Specifically, across the thickness direction from the base material zone to the transition zone and finally to the stirring zone, both the grain size and austenite fraction decrease while the dislocation density increases, which results from the simultaneous effect of severe plastic deformation and recrystallization during FSP. Due to the gradient structure, an obvious difference in the strain across the thickness direction of the steel occurs during the deformation process, resulting in significant hetero-deformation-induced (HDI) strengthening. The deformation mechanism analysis reveals that HDI strengthening and dislocation strengthening are the main factors in the improvement in the strength-ductility balance. The obtained knowledge sheds light on the process of fabricating medium Mn steels with excellent properties using FSP manufacturing technology.
RESUMO
Single-ion conductive polymer electrolytes can improve the safety of lithium ion batteries (LIBs) by increasing the lithium transference number (tLi+) and avoiding the growth of lithium dendrites. Meanwhile, the self-assembled ordered structure of liquid crystal polymer networks (LCNs) can provide specific channels for the ordered transport of Li ions. Herein, single-ion conductive nematic and cholesteric LCN electrolyte membranes (denoted as NLCN-Li and CLCN-Li) were successfully prepared. NLCN-Li was then coated on commercial Celgard 2325 while CLCN-Li was coated on poly(vinylidene fluoride-hexafluoropropylene) film, coupled with plasticizer, to make NLCN-Li/Cel and CLCN-Li/Pv quasi-solid-state electrolyte membranes, respectively. Their electrochemical properties were evaluated, and it was found that they possessed benign thermal stability and electrolyte/electrode compatibility, high tLi+ up to 0.98 and high electrochemical stability window up to 5.2 V. A small amount (0.5M) of extra Li salt added to the plasticizer could improve the ion conductivity from 1.79 × 10-5 to 5.04 × 10-4 S cm-1, while the tLi+ remained 0.85. The assembled LFP|Li batteries also exhibited excellent cycling and rate performances. The orderliness of the LCN layer played an important role in the distribution and movement of Li ions, thereby affecting the Li deposition and growth of Li dendrites. As the first report of nematic and cholesteric LCN single-ion conductors, this work sheds light on the design and fabrication of ordered quasi-solid-state electrolytes for high-performance and safe LIBs.
RESUMO
Berberine (BBR), as a natural isoquinoline alkaloid, has demonstrated various pharmacological activities, and is widely applied in the treatment of diseases. The quantitative analysis of BBR is important for pharmacological studies and clinical applications. In this work, utilizing the specific interaction between BBR and triplex DNA, a sensitive and selective fluorescent detecting method was established with DNA-templated silver nanoclusters (DNA-AgNCs). After binding with the triplex structure in the template of DNA-AgNCs, BBR quenched the fluorescence of DNA-AgNCs and formed BBR-triplex complex with yellow-green fluorescence. The ratiometric fluorescence signal showed a linear relationship with BBR concentration in a range from 10 nM to 1000 nM, with a detection limit of 10 nM. Our method exhibited excellent sensitivity and selectivity, and was further applied in BBR detection in real samples.
Assuntos
Berberina , DNA , Nanopartículas Metálicas , Prata , Espectrometria de Fluorescência , Berberina/química , Berberina/análise , Prata/química , Nanopartículas Metálicas/química , DNA/química , DNA/análise , Espectrometria de Fluorescência/métodos , Fluorescência , Limite de Detecção , HumanosRESUMO
Aims: This study evaluated the impact of wheat straw return and microbial agent application on rice field environments. Methods: Using Rice variety Chuankangyou 2115 and a microbial mix of Bacillus subtilis and Trichoderma harzianum. Five treatments were tested: T1 (no straw return), T2 (straw return), T3, T4, and T5 (straw return with varying ratios of Bacillus subtilis and Trichoderma harzianum). Results: Results indicated significant improvements in rice root length, surface area, dry weight, soil nutrients, and enzyme activity across T2-T5 compared to T1, enhancing yield by 3.81-26.63%. T3 (50:50 microbial ratio) was optimal, further increasing root dry weight, soil enzyme activity, effective panicle and spikelet numbers, and yield. Dominant bacteria in T3 included MBNT15, Defluviicoccus, Rokubacteriales, and Latescibacterota. Higher Trichoderma harzianum proportions (75% in T5) increased straw decomposition but slightly inhibited root growth. Correlation analysis revealed a significant positive relationship between yield and soil microorganisms like Gemmatimonadota and Firmicutes at the heading stage. Factors like dry root weight, straw decomposition rate post-jointing stage, and elevated soil enzyme activity and nutrient content from tiller to jointing stage contributed to increased panicle and spikelet numbers, boosting yield. Conclusion: The optimal Bacillus subtilis and Trichoderma harzianum ratio for straw return was 50:50, effectively improving soil health and synergizing high rice yield with efficient straw utilization.
RESUMO
Cholesteric liquid crystal microcapsules (CLCMs) are used to improve the stability of liquid crystals while ensuring their stimulus response performance and versatility, with representative applications such as sensing, anticounterfeiting, and smart fabrics. However, the reflectivity and angular anisotropy decrease because of the anchoring effect of the polymer shell matrix, and the influence of particle size on this has not been thoroughly studied. In this study, the effect of synthesis technology on microcapsule particle size was investigated using a complex coalescence method, and the effect of particle size on the reflectivity and angular anisotropy of CLCMs was investigated in detail. A particle size of approximately 66 µm with polyvinyl alcohol (PVA, 1:1) exhibited a relative reflectivity of 16.6% and a bandwidth of 20 nm, as well as a narrow particle size distribution of 22 µm. The thermosetting of microcapsules coated with PVA was adjusted and systematically investigated by controlling the mass ratio. The optimized mass ratio of microcapsules (66 µm) to PVA was 2:1, increasing the relative reflectivity from 16.6% (1:1) to 32.0% (2:1) because of both the higher CLCM content and the matching between the birefringence of the gelatin-arabic shell system and PVA. Furthermore, color based on Bragg reflections was observed in the CLCM-coated ortho-axis and blue-shifted off-axis, and this change was correlated with the CLCM particle size. Such materials are promising for anticounterfeiting and color-based applications with bright colors and angular anisotropy in reflection.
RESUMO
Recently it has been shown that two coincident well designed laser pulses with two different combinations of circular polarizations ( ++ or -+ ) can create chiral electronic densities in an oriented heteronuclear diatomic molecule. Subsequently, the chirality flips from the electronic Ra to Sa to Ra to Sa etc. enantiomers, with periods in the femtosecond (fs) and attosecond (as) time domains. The results were obtained by means of quantum dynamics simulations for oriented NaK. Here we investigate the electronic chirality flips in oriented RbCs induced by all possible ( ++ , -+ , +- , -- ) combinations of circular polarizations of two coincident well-designed laser pulses. Accordingly, the ++ and -- as well as the +- and -+ combinations generate opposite electronic enantiomers, e. g. Ra versus Sa, followed by opposite periodic chirality flips, e.g. form Ra to Sa to Ra to Sa etc. versus form Sa to Ra to Sa to Ra etc, with periods in the fs and as time domains, respectively. The laser induced spatio-temporal symmetries are derived from first principles and illustrated by quantum dynamics simulations.
RESUMO
Herein, a series of lignin-based porous carbons (LC) were prepared from sulfonated lignin through a simple and environmentally-friendly one-pot activated carbonization together with various potassium compounds as activators, and used for malachite green (MG) adsorption. The results showed that the prepared biochar, especially after K2CO3 activation, exhibited a honeycomb profile with large surface area (2107.6 m2/g) and high total pore volume (1.1591 cm3/g), having excellent efficiency for MG adsorption, and the biggest adsorption capacity was 2970.0 mg/g. The kinetic study together with thermodynamic analysis indicated that the adsorption of MG by LC-K2CO3 conformed to pseudo-second-order model and the adsorption process was spontaneous, feasible, and endothermic. Moreover, LC-K2CO3 also displayed good stability and selectivity, and can selective separate the cationic dye from binary-dye system. Furthermore, the adsorption mechanism proposed in this work manifested that the high-efficient MG adsorption by LC-K2CO3 was a result of multiple actions including hydrogen bonding, electrostatic attraction, π-π interaction and n-π interaction as well as physical absorption. The work not only provide a fundamental theory for dye removal from wastewater, but offered a new insight for lignin valorization.
Assuntos
Carvão Vegetal , Lignina , Corantes de Rosanilina , Lignina/química , Corantes de Rosanilina/química , Adsorção , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Potássio/química , Termodinâmica , Purificação da Água/métodos , Sais/química , Porosidade , Águas Residuárias/químicaRESUMO
Grimme's Continuous Chirality Measure ( C C M ${CCM}$ ) was developed for comparisons of the chirality of the electronic wave functions of molecules, typically in their ground states. For example, C C M = 14 . 5 ${CCM=14.5}$ , 1 . 2 ${1.2}$ and 0 . 0 ${0.0}$ for alanine, hydrogen-peroxide, and for achiral molecules, respectively. Well-designed laser pulses can excite achiral molecules from the electronic ground state to time-dependent chiral superposition states, with chirality flips in the femto- or even attosecond (fs or as) time domains. Here we provide a time-dependent extension C C M t ${CCM\left(t\right)}$ of Grimme's C C M ${CCM}$ for trailing the electronic chirality flips. As examples, we consider two laser driven electronic wavefunctions which represent flips between opposite electronic enantiomers of oriented NaK within 4 . 76 f s ${4.76\ {\rm f}{\rm s}}$ and 433 a s ${433\ {\rm a}{\rm s}}$ . The corresponding C C M t ${CCM\left(t\right)}$ vary respectively from 14 . 5 ${14.5}$ or from 13 . 3 ${13.3}$ to 0 . 0 ${0.0}$ , and back.
RESUMO
In this work, the tensile deformation mechanisms of the Fe55Co17.5Cr12.5Ni10Mo5-xCx-based medium-entropy alloy at room temperature (R.T.), 77 K, and 4.2 K are studied. The formation of micro-defects and martensitic transformation to delay the cryogenic fracture are observed. The results show that FeCoCrNiMo5-xCx-based alloys exhibit outstanding mechanical properties under cryogenic conditions. Under an R.T. condition, the primary contributing mechanism of strain hardening is twinning-induced plasticity (TWIP), whereas at 77 K and 4.2 K, the activation of martensitic transformation-induced plasticity (TRIP) becomes the main strengthening mechanism during cryogenic tensile deformation. Additionally, the carbide precipitation along with increased dislocation density can significantly improve yield and tensile strength. Furthermore, the marked reduction in stacking fault energy (SFE) at cryogenic temperatures can promote mechanisms such as twinning and martensitic transformations, which are pivotal for enhancing ductility under extreme conditions. The Mo4C1 alloy obtains the optimal strength-ductility combination at cryogenic-to-room temperatures. The tensile strength and elongation of the Mo4C1 alloy are 776 MPa and 50.5% at R.T., 1418 MPa and 71.2% in liquid nitrogen 77 K, 1670 MPa and 80.0% in liquid helium 4.2 K, respectively.
RESUMO
Photosensitizers typically rely on a singular photochemical reaction to generate reactive oxygen species, which can then inhibit or eradicate lesions. However, photosensitizers often exhibit limited therapeutic efficiency due to their reliance on a single photochemical effect. Herein, we propose a new strategy that integrates the photochemical effect (type-I photochemical effect) with a biological effect (proton sponge effect). To test our strategy, we designed a series of photosensitizers (ZZ-sers) based on the naphthalimide molecule. ZZ-sers incorporate both a p-toluenesulfonyl moiety and weakly basic groups to activate the proton sponge effect while simultaneously strengthening the type-I photochemical effect, resulting in enhanced apoptosis and programmed cell death. Experiments confirmed near-complete eradication of the tumour burden after 14 days (Wlight/Wcontrol ≈ 0.18, W represents the tumour weight). These findings support the notion that the coupling of a type-I photochemical effect with a proton sponge effect can enhance the tumour inhibition by ZZ-sers, even if the basic molecular backbones of the photosensitizers exhibit nearly zero or minimal tumour inhibition ability. We anticipate that this strategy can be generalized to develop additional new photosensitizers with improved therapeutic efficacy while overcoming limitations associated with systems relying solely on single photochemical effects.
RESUMO
Nuclear factor erythroid 2-related factor-2 (Nrf2) antioxidant signaling is involved in liver protection, but this generalization overlooks conflicting studies indicating that Nrf2 effects are not necessarily hepatoprotective. The role of Nrf2/heme oxygenase-1 (HO-1) in cholestatic liver injury (CLI) remains poorly defined. Here, we report that Nrf2/HO-1 activation exacerbates liver injury rather than exerting a protective effect in CLI. Inhibiting HO-1 or ameliorating bilirubin transport alleviates liver injury in CLI models. Nrf2 knockout confers hepatoprotection in CLI mice, whereas in non-CLI mice, Nrf2 knockout aggravates liver damage. In the CLI setting, oxidative stress activates Nrf2/HO-1, leads to bilirubin accumulation, and impairs mitochondrial function. High levels of bilirubin reciprocally upregulate the activation of Nrf2 and HO-1, while antioxidant and mitochondrial-targeted SOD2 overexpression attenuate bilirubin toxicity. The expression of Nrf2 and HO-1 is elevated in serum of patients with CLI. These results reveal an unrecognized function of Nrf2 signaling in exacerbating liver injury in cholestatic disease.