Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142780, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971437

RESUMO

Lipophilic shellfish toxins (LSTs) are widely distributed in marine environments worldwide, potentially threatening marine ecosystem health and aquaculture safety. In this study, two large-scale cruises were conducted in the Bohai Sea and the Yellow Sea, China, in spring and summer 2023 to clarify the composition, concentration, and spatial distribution of LSTs in the water columns and sediments. Results showed that okadaic acid (OA), dinophysistoxin-1 (DTX1) and/or pectenotoxin-2 (PTX2) were detected in 249 seawater samples collected in spring and summer. The concentrations of ∑LSTs in seawater were ranging of ND (not detected) -13.86, 1.60-17.03, 2.73-17.39, and 1.26-30.21 pmol L-1 in the spring surface, intermediate, bottom water columns and summer surface water layers, respectively. The detection rates of LSTs in spring and summer seawater samples were 97% and 100%, respectively. The high concentrations of ∑LSTs were mainly distributed in the north Yellow Sea and the northeast Bohai Sea in spring, and in the northeast Yellow Sea, the waters around Laizhou Bay and Rongcheng Bay in summer. Similarly, only OA, DTX1 and PTX2 were detected in the surface sediments. Overall, the concentration of ∑LSTs in the surface sediments of the northern Yellow Sea was higher than that in other regions. In sediment cores, PTX2 was mainly detected in the upper sediment samples, whereas OA and DTX1 were detected in deeper sediments, and LSTs can persist in the sediments for a long time. Overall, OA, DTX1 and PTX2 were widely distributed in the water column and surface sediments in the Bohai Sea and the Yellow Sea, China. The results of this study contribute to the understanding of spatial distribution of LSTs in seawater and sediment environmental media and provide basic information for health risk assessment of phycotoxins.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Toxinas Marinhas , Ácido Okadáico , Piranos , Água do Mar , China , Água do Mar/química , Sedimentos Geológicos/química , Toxinas Marinhas/análise , Ácido Okadáico/análise , Ácido Okadáico/análogos & derivados , Piranos/análise , Frutos do Mar/análise , Poluentes Químicos da Água/análise , Estações do Ano , Animais , Oceanos e Mares , Macrolídeos/análise , Toxinas de Poliéter , Furanos
2.
J Hazard Mater ; 469: 133987, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461668

RESUMO

Plastic additives such as the antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) have been widely detected in aquatic environments, over a wide range of concentrations reaching 300 µg/L in surface water, potentially threatening the health of aquatic organisms and ecosystems. However, knowledge of the specific effects of 2,4-DTBP on aquatic vertebrates is still limited. In this study, adult zebrafish were exposed to different concentrations of 2,4-DTBP (0, 0.01, 0.1 and 1.0 mg/L) for 21 days in the laboratory. The amplicon sequencing results indicated that the diversity and composition of the zebrafish gut microbiota were significantly changed by 2,4-DTBP, with a shift in the dominant flora to more pathogenic genera. Exposure to 2,4-DTBP at 0.1 and 1.0 mg/L significantly increased the body weight and length of zebrafish, suggesting a biological stress response. Structural assembly defects were also observed in the intestinal tissues of zebrafish exposed to 2,4-DTBP, including autolysis of intestinal villi, adhesions and epithelial detachment of intestinal villi, as well as inflammation. The transcriptional expression of some genes showed that 2,4-DTBP adversely affected protein digestion and absorption, glucose metabolism and lipid metabolism. These results are consistent with the PICRUSt2 functional prediction analysis of intestinal microbiota of zebrafish exposed to 2,4-DTBP. This study improves our understanding of the effects of 2,4-DTBP on the health of aquatic vertebrates and ecosystems.


Assuntos
Microbioma Gastrointestinal , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Ecossistema , Fenóis/química
3.
J Hazard Mater ; 465: 133087, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38035524

RESUMO

It is still limited that how the microalgal toxin okadaic acid (OA) affects the intestinal microbiota in marine fishes. In the present study, adult marine medaka Oryzias melastigma was exposed to the environmentally relevant concentration of OA (5 µg/L) for 10 days, and then recovered in fresh seawater for 10-days depuration. Analysis of taxonomic composition and diversity of the intestinal microbiota, as well as function prediction analysis and histology observation were carried out in this study. Functional prediction analysis indicated that OA potentially affected the development of colorectal cancer, protein and carbohydrate digestion and absorption functions, and development of neurodegenerative diseases like Parkinson's disease, which may be associated with changes in Proteobacteria and Firmicutes in marine medaka. Significant increases of C-reactive protein (CRP) and inducible nitric oxide synthase (iNOS) levels, as well as the changes of histology of intestinal tissue demonstrated that an intestinal inflammation was induced by OA exposure in marine medaka. This study showed that the environmental concentrations of OA could harm to the intestinal microbiota thus threatening the health of marine medaka, which hints that the chemical ecology of microalgal toxins should be paid attention to in future studies.


Assuntos
Microbioma Gastrointestinal , Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Ácido Okadáico , Ecologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-37611885

RESUMO

The phycotoxin dinophysistoxins are widely distributed in the global marine environments and potentially threaten marine organisms and human health. The mechanism of the dinophysistoxin toxicity in inhibiting the growth of microalgae is less well understood. In this study, effects of the dissolved dinophysistoxin-1 (DTX1) on the growth, pigment contents, PSII photosynthetic efficiency, oxidative stress response and cell cycle of the marine microalga Isochrysis galbana were investigated. Growth of I. galbana was significantly inhibited by DTX1 with 0.6-1.5 µmol L-1 in a 96-h batch culture, corresponding the 96 h-EC50 of DTX1 at 0.835 µmol L-1. The maximum quantum yield of PSII (Fv/Fm), and light utilization efficiency (α) were obviously reduced by DTX1 at 1.5 µmol L-1 during 96-h exposure. Contents of most of pigments were generally reduced by DTX1 with a dose-depend pattern in microalgal cells except for diatoxanthin. The ROS levels were increased by DTX1 with 0.6-1.5 µmol L-1 after 72-h exposure, while the contents or activities of MDA, GSH, SOD and CAT were significantly increased by DTX1 at 1.5 µmol L-1 at 96 h. The inhibitory effect of DTX1 on the growth of I. galbana was mainly caused by the production of ROS in the cells. Cell cycle analysis showed that the I. galbana cell cycle was arrested by DTX1 at G2/M phase. This study enhances the understanding of the chemical ecology effects of DTX1 on marine microalgae and also provides fundamental data for deriving water quality criteria of DSTs for marine organisms.


Assuntos
Haptófitas , Microalgas , Humanos , Espécies Reativas de Oxigênio , Divisão Celular , Ciclo Celular
5.
Aquat Toxicol ; 260: 106576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196507

RESUMO

The lipophilic okadaic acid (OA)-group toxins produced by some species of Dinophysis spp. and Prorocentrum spp. marine dinoflagellates have been frequently and widely detected in natural seawater environments, e.g. 2.1∼1780 ng/L in Spanish sea and 5.63∼27.29 ng/L in the Yellow Sea of China. The toxicological effects of these toxins dissolved in seawater on marine fish is still unclear. Effects of OA on the embryonic development and 1-month old larvae of marine medaka (Oryzias melastigma) were explored and discussed in this study. Significantly increased mortality and decreased hatching rates occurred for the medaka embryos exposed to OA at 1.0 µg/mL. Diverse malformations including spinal curvature, dysplasia and tail curvature were also observed in the embryos exposed to OA and the heart rates significantly increased at 11 d post fertilization. The 96 h LC50 of OA for 1-month old larvae was calculated at 3.80 µg/mL. The reactive oxygen species (ROS) was significantly accumulated in medaka larvae. Catalase (CAT) enzyme activity was significantly increased in 1-month old larvae. Acetylcholinesterase (AChE) activity significantly increased with a dose-dependent pattern in 1-month old larvae. Differentially expressed genes (DEGs) were enriched in 11 KEGG pathways with Q value < 0.05 in 1-month old medaka larvae exposed to OA at 0.38 µg/mL for 96 h, which were mainly related to cell division and proliferation, and nervous system. Most of DEGs involved in DNA replication, cell cycle, nucleotide excision repair, oocyte meiosis, and mismatch repair pathways were significantly up-regulated, while most of DEGs involved in synaptic vesicle cycle, glutamatergic synapse, and long-term potentiation pathways were markedly down-regulated. This transcriptome analysis demonstrated that a risk of cancer developing was possibly caused by OA due to DNA damage in marine medaka larvae. In addition, the neurotoxicity of OA was also testified for marine fish, which potentially cause major depressive disorder (MDD) via the up-regulated expression of NOS1 gene. The genotoxicity and neurotoxicity of OA to marine fish should be paid attention to and explored further in the future.


Assuntos
Transtorno Depressivo Maior , Dinoflagellida , Oryzias , Poluentes Químicos da Água , Animais , Oryzias/metabolismo , Ácido Okadáico/toxicidade , Ácido Okadáico/metabolismo , Acetilcolinesterase/metabolismo , Poluentes Químicos da Água/toxicidade , Larva
6.
J Appl Toxicol ; 41(11): 1765-1778, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33645740

RESUMO

Excessive accumulation of Zn2+ or Ni2+ can cause various problems to aquatic animals. In this study, the developmental toxicity induced by individual or combined exposure of Zn2+ and Ni2+ to zebrafish embryos and larvae were evaluated to better understand the interaction between Zn2+ and Ni2+ . Both of individual and combined exposure of Zn2+ and Ni2+ could cause obvious developmental toxicity, which mainly occurred after hatching, at a concentration-dependent manner. The calculated 168-h LC50 were 2.79 mg/L for Zn2+ and 7.44 mg/L for Ni2+ . The interaction of Zn2+ and Ni2+ based on mortality was found to be an antagonism. Various malformations, including tail curving, spinal curvature, pericardial edema, and yolk sac edema, were observed with significant effects on body length and heartbeat rates after exposure of Zn2+ and Ni2+ . Meanwhile, some genes related to cardiovascular development and bone formation were mainly down-regulated by the individual and combined exposure of Zn2+ and Ni2+ . The individual exposure was more toxic than combined exposure because the interaction of Zn2+ and Ni2+ was determined to be an antagonism. The down-regulation of genes related to cardiovascular development and bone formation may contribute to the observed malformation and decreases of body length and heartbeat rates.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Níquel/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Zinco/toxicidade , Animais , Larva/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA