Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 629(8013): 927-936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588697

RESUMO

Broad-spectrum RAS inhibition has the potential to benefit roughly a quarter of human patients with cancer whose tumours are driven by RAS mutations1,2. RMC-7977 is a highly selective inhibitor of the active GTP-bound forms of KRAS, HRAS and NRAS, with affinity for both mutant and wild-type variants3. More than 90% of cases of human pancreatic ductal adenocarcinoma (PDAC) are driven by activating mutations in KRAS4. Here we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models. We observed broad and pronounced anti-tumour activity across models following direct RAS inhibition at exposures that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumour versus normal tissues. Treated tumours exhibited waves of apoptosis along with sustained proliferative arrest, whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. In the autochthonous KPC mouse model, RMC-7977 treatment resulted in a profound extension of survival followed by on-treatment relapse. Analysis of relapsed tumours identified Myc copy number gain as a prevalent candidate resistance mechanism, which could be overcome by combinatorial TEAD inhibition in vitro. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS-GTP inhibition in the setting of PDAC and identify a promising candidate combination therapeutic regimen to overcome monotherapy resistance.


Assuntos
Apoptose , Carcinoma Ductal Pancreático , Proliferação de Células , Guanosina Trifosfato , Neoplasias Pancreáticas , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Feminino , Proliferação de Células/efeitos dos fármacos , Guanosina Trifosfato/metabolismo , Modelos Animais de Doenças , Masculino , Proteínas ras/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105998

RESUMO

Broad-spectrum RAS inhibition holds the potential to benefit roughly a quarter of human cancer patients whose tumors are driven by RAS mutations. However, the impact of inhibiting RAS functions in normal tissues is not known. RMC-7977 is a highly selective inhibitor of the active (GTP-bound) forms of KRAS, HRAS, and NRAS, with affinity for both mutant and wild type (WT) variants. As >90% of human pancreatic ductal adenocarcinoma (PDAC) cases are driven by activating mutations in KRAS, we assessed the therapeutic potential of RMC-7977 in a comprehensive range of PDAC models, including human and murine cell lines, human patient-derived organoids, human PDAC explants, subcutaneous and orthotopic cell-line or patient derived xenografts, syngeneic allografts, and genetically engineered mouse models. We observed broad and pronounced anti-tumor activity across these models following direct RAS inhibition at doses and concentrations that were well-tolerated in vivo. Pharmacological analyses revealed divergent responses to RMC-7977 in tumor versus normal tissues. Treated tumors exhibited waves of apoptosis along with sustained proliferative arrest whereas normal tissues underwent only transient decreases in proliferation, with no evidence of apoptosis. Together, these data establish a strong preclinical rationale for the use of broad-spectrum RAS inhibition in the setting of PDAC.

3.
Science ; 381(6659): 794-799, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590355

RESUMO

The discovery of small-molecule inhibitors requires suitable binding pockets on protein surfaces. Proteins that lack this feature are considered undruggable and require innovative strategies for therapeutic targeting. KRAS is the most frequently activated oncogene in cancer, and the active state of mutant KRAS is such a recalcitrant target. We designed a natural product-inspired small molecule that remodels the surface of cyclophilin A (CYPA) to create a neomorphic interface with high affinity and selectivity for the active state of KRASG12C (in which glycine-12 is mutated to cysteine). The resulting CYPA:drug:KRASG12C tricomplex inactivated oncogenic signaling and led to tumor regressions in multiple human cancer models. This inhibitory strategy can be used to target additional KRAS mutants and other undruggable cancer drivers. Tricomplex inhibitors that selectively target active KRASG12C or multiple RAS mutants are in clinical trials now (NCT05462717 and NCT05379985).


Assuntos
Produtos Biológicos , Ciclofilina A , Imunofilinas , Chaperonas Moleculares , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Cisteína/química , Cisteína/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Ciclofilina A/química , Ciclofilina A/metabolismo , Imunofilinas/química , Imunofilinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
J Med Chem ; 66(1): 149-169, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533617

RESUMO

Hyperactivation of mTOR kinase by mutations in the PI3K/mTOR pathway or by crosstalk with other mutant cancer drivers, such as RAS, is a feature of many tumors. Multiple allosteric inhibitors of mTORC1 and orthosteric dual inhibitors of mTORC1 and mTORC2 have been developed as anticancer drugs, but their clinical utility has been limited. To address these limitations, we have developed a novel class of "bi-steric inhibitors" that interact with both the orthosteric and the allosteric binding sites in order to deepen the inhibition of mTORC1 while also preserving selectivity for mTORC1 over mTORC2. In this report, we describe the discovery and preclinical profile of the development candidate RMC-5552 and the in vivo preclinical tool compound RMC-6272. We also present evidence that selective inhibition of mTORC1 in combination with covalent inhibition of KRASG12C shows increased antitumor activity in a preclinical model of KRASG12C mutant NSCLC that exhibits resistance to KRASG12C inhibitor monotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral
5.
Sci Transl Med ; 11(503)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366581

RESUMO

The androgen receptor (AR) is a driver of cellular differentiation and prostate cancer development. An extensive body of work has linked these normal and aberrant cellular processes to mRNA transcription; however, the extent to which AR regulates posttranscriptional gene regulation remains unknown. Here, we demonstrate that AR uses the translation machinery to shape the cellular proteome. We show that AR is a negative regulator of protein synthesis and identify an unexpected relationship between AR and the process of translation initiation in vivo. This is mediated through direct transcriptional control of the translation inhibitor 4EBP1. We demonstrate that lowering AR abundance increases the assembly of the eIF4F translation initiation complex, which drives enhanced tumor cell proliferation. Furthermore, we uncover a network of pro-proliferation mRNAs characterized by a guanine-rich cis-regulatory element that is particularly sensitive to eIF4F hyperactivity. Using both genetic and pharmacologic methods, we demonstrate that dissociation of the eIF4F complex reverses the proliferation program, resulting in decreased tumor growth and improved survival in preclinical models. Our findings reveal a druggable nexus that functionally links the processes of mRNA transcription and translation initiation in an emerging class of lethal AR-deficient prostate cancer.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Regulon/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Técnicas In Vitro , Íntrons/genética , Masculino , Camundongos , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Regulon/genética
6.
J Clin Invest ; 129(10): 4492-4505, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31361600

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole genome RNA sequencing, gene set enrichment analysis and immunohistochemistry. Our analyses revealed five mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: (i) AR-high tumors (ARPC), (ii) AR-low tumors (ARLPC), (iii) amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), (iv) double-negative tumors (i.e. AR-/NE-; DNPC) and (v) tumors with small cell or NE gene expression without AR activity (SCNPC). RE1-silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the five mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias , Neoplasias de Próstata Resistentes à Castração , Transcrição Gênica , Humanos , Masculino , Metástase Neoplásica , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias de Próstata Resistentes à Castração/classificação , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
7.
Eur J Phys Rehabil Med ; 52(6): 774-781, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27575012

RESUMO

BACKGROUND: Hemiplegic shoulder pain (HSP) impedes functional motor recovery of the affected limbs and negatively affects quality of life and daily activities. Kinesiology taping (KT) may provide improvement in hemiplegic shoulder pain and upper extremity function after an acute stroke. AIM: To assess the impact of KT on HSP, upper extremity functional outcomes, and the prevention of shoulder soft tissue injury in subacute stroke patients with hemiplegic shoulders during rehabilitation. DESIGN: Randomized, double-blind controlled trial. SETTING: Rehabilitation unit at a single medical center. POPULATION: Forty-four subacute stroke patients with hemiplegia. METHODS: Forty-four subacute stroke patients with hemiplegia participated in this study and were randomly allocated to the control group (sham KT) or experimental group (therapeutic KT). In the experimental group, a 3-week therapeutic KT with conventional inpatient rehabilitation was applied for 5 days per week. In the control group, the patients received a 3-week sham KT with conventional inpatient rehabilitation for 5 days per week. Shoulder subluxation, spasticity, hemiplegic shoulder pain, the Fugl-Meyer Assessment for Upper Extremity (FMA-UE), modified Barthel Index (MI), Stroke-Specific Quality of Life (SSQOL) scale, and shoulder sonography were measured before and after treatment. RESULTS: Pain-free flexion was significantly increased in hemiplegic shoulders after therapeutic KT. From 16 (70%) to 20 (87%) patients in the control and from 12 (57%) to 12 (57%) in the experimental groups had HSP after intervention, and a significant difference in the occurrence of HSP was found between these groups after treatment (P<0.05). Significant improvements (P<0.05) were noted in the FMA-UE, modified BI, and SSQOL scales after treatment in both groups. No significant differences between the groups were seen on shoulder sonography (P>0.05). CONCLUSIONS: Therapeutic KT may limit the development of HSP and improve shoulder flexion in subacute stroke patients with flaccid shoulders during inpatient rehabilitation. For subacute stroke patients with hemiplegia, therapeutic KT may not provide improvements in the upper extremity function, daily activity, and quality of life over sham KT during conventional inpatient rehabilitation. CLINICAL REHABILITATION IMPACT: Kinesiology taping may provide positive effects on shoulder flexion and decrease the occurrence of HSP in subacute stroke patients with hemiplegic shoulders during conventional inpatient rehabilitation.


Assuntos
Fita Atlética , Hemiplegia/reabilitação , Manejo da Dor/métodos , Dor de Ombro/reabilitação , Reabilitação do Acidente Vascular Cerebral/métodos , Método Duplo-Cego , Feminino , Hemiplegia/diagnóstico por imagem , Hemiplegia/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Espasticidade Muscular/fisiopatologia , Espasticidade Muscular/reabilitação , Medição da Dor , Qualidade de Vida , Dor de Ombro/diagnóstico por imagem , Dor de Ombro/fisiopatologia , Resultado do Tratamento , Ultrassonografia
8.
J Neurosci ; 23(32): 10331-7, 2003 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-14614092

RESUMO

Buprenorphine is a mixed opioid receptor agonist-antagonist used clinically for maintenance therapy in opiate addicts and pain management. Dose-response curves for buprenorphine-induced antinociception display ceiling effects or are bell shaped, which have been attributed to the partial agonist activity of buprenorphine at opioid receptors. Recently, buprenorphine has been shown to activate opioid receptor-like (ORL-1) receptors, also known as OP4 receptors. Here we demonstrate that buprenorphine, but not morphine, activates mitogen-activated protein kinase and Akt via ORL-1 receptors. Because the ORL-1 receptor agonist orphanin FQ/nociceptin blocks opioid-induced antinociception, we tested the hypothesis that buprenorphine-induced antinociception might be compromised by concomitant activation of ORL-1 receptors. In support of this hypothesis, the antinociceptive effect of buprenorphine, but not morphine, was markedly enhanced in mice lacking ORL-1 receptors using the tail-flick assay. Additional support for a modulatory role for ORL-1 receptors in buprenorphine-induced antinociception was that coadministration of J-113397, an ORL-1 receptor antagonist, enhanced the antinociceptive efficacy of buprenorphine in wild-type mice but not in mice lacking ORL-1 receptors. The ORL-1 antagonist also eliminated the bell-shaped dose-response curve for buprenorphine-induced antinociception in wild-type mice. Although buprenorphine has been shown to interact with multiple opioid receptors, mice lacking micro-opioid receptors failed to exhibit antinociception after buprenorphine administration. Our results indicate that the antinociceptive effect of buprenorphine in mice is micro-opioid receptor-mediated yet severely compromised by concomitant activation of ORL-1 receptors.


Assuntos
Buprenorfina/farmacologia , Medição da Dor/efeitos dos fármacos , Proteínas Serina-Treonina Quinases , Receptores Opioides mu/metabolismo , Receptores Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Benzimidazóis/farmacologia , Células Cultivadas , Cricetinae , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Peptídeos Opioides/farmacologia , Piperidinas/farmacologia , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores Opioides/deficiência , Receptores Opioides/efeitos dos fármacos , Receptores Opioides mu/deficiência , Receptores Opioides mu/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor de Nociceptina , Nociceptina
9.
J Neurosci ; 23(23): 8360-9, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12967998

RESUMO

Opioid-receptor activation in cell lines results in phosphorylation of p42/44 mitogen-activated protein kinase (MAPK), which contributes to agonist-induced desensitization of adenylate cyclase signaling. In this study, morphine-induced MAPK modulation was examined in the mouse brain using antibodies against phosphorylated MAPK. Thirty minutes after systemic morphine, MAPK modulation was observed in brain areas associated with analgesia and reward. Activation of MAPK was increased in the anterior cingulate (Acc), somato-sensory and association cortices, and locus ceruleus (LC). In contrast, MAPK activation was decreased in the nucleus accumbens and central amygdala (CeA). Double-label confocal microscopy revealed that morphine-induced MAPK modulation occurred predominantly in cells not expressing mu-opioid receptors, with the exception of the LC. Furthermore, the NMDA receptor antagonist 3,3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonate blocked morphine-induced MAPK modulation in several cortical areas including the Acc. We then examined morphine-induced MAPK modulation during expression of either analgesic tolerance or locomotor sensitization, which were differentiated by two repeated morphine regimens. Analgesic tolerance was accompanied by tolerance to morphine-induced MAPK modulation in all of the brain areas examined except the CeA. Locomotor sensitization resulted in sensitization to morphine-induced MAPK activation in the posterior basolateral amygdala. Additionally, a pronounced instatement of morphine-induced MAPK activation was observed in CA3 hippocampal processes. This instatement was observed during expression of tolerance; however, it was not significant during sensitization. In summary, these results provide distinct, region-specific mechanisms for morphine-induced MAPK modulation in the mouse brain and give insight into the brain circuitry involved in acute and adaptive opioid behaviors.


Assuntos
Analgésicos Opioides/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfina/farmacologia , Animais , Esquema de Medicação , Tolerância a Medicamentos/fisiologia , Ativação Enzimática/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Atividade Motora/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Fosforilação , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides mu/metabolismo , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA