Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Geriatr Nurs ; 60: 128-136, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244798

RESUMO

The World Health Organization stresses eHealth literacy's importance for effective health management, particularly among older adults, whose eHealth literacy is globally low and unequal. This scoping review aims to identify strategies to enhance their eHealth literacy. A literature search was performed in eight electronic databases until February 20, 2024, found 1629 records, with 24 meeting inclusion criteria. Most studies (8 of 17, 47.1 %) employed health behavior and learning theories. Interventions materials commonly utilized existing or self-designed websites or applications, with some U.S. studies incorporating standardized training materials. Outcome measures included information, psychological motivation, and behavioral change. The eHealth literacy scale was frequently used to assess eHealth literacy. Coach education combined with classroom exercises proved effective, and online health education was pivotal during the COVID-19 pandemic. Future research should focus on enhancing study design, utilizing comprehensive but concise assessment tools, tailoring interventions to theoretical frameworks, and prioritizing privacy and security.

2.
Neural Regen Res ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39248165

RESUMO

Microglia-mediated neuroinflammation plays a crucial role in ischemic stroke; consequently, understanding its regulation could facilitate the development of therapies for ischemic stroke. Chemerin 15, a 15-amino acid peptide derived from chemerin, exerts powerful anti-inflammatory effects through ChemR23, modulates macrophage polarization, and diminishes inflammatory cytokine expression in peripheral inflammation models. However, its effects on microglia and stroke remain unclear. In this study, we used an in vitro oxygen/ glucose deprivation BV2 cell model and a mouse model of ischemia-reperfusion injury to investigate the role of chemerin 15 in stroke and the underlying mechanisms. We co-cultured BV2 microglial cells with HT-22 hippocampal neurons and observed that chemerin 15 reduced apoptosis in HT-22 cells. Furthermore, we found that chemerin 15 binds to the ChemR23 receptor on the cell surface, inducing its internalization. This process regulated the activity of adenosine 5'-monophosphate-activated protein kinase and inhibited its downstream target nuclear factor kappa B. These effects could be reversed by treatment with α-NETA, a ChemR23 inhibitor. In mice with ischemia-reperfusion injury, chemerin 15 modulated microglial polarization, reduced infarct volume and neuronal apoptosis, and facilitated cognitive and neurological function recovery. Our findings suggest that chemerin 15 suppresses the microglia-mediated inflammatory response, decreases neuronal apoptosis, and enhances long-term neurological function recovery by inducing ChemR23 internalization and regulating the adenosine 5'-monophosphate-activated protein kinase/nuclear factor kappa B signaling pathway.

3.
Clin Epigenetics ; 16(1): 132, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294759

RESUMO

BACKGROUND: Imprinted genes play important functions in placentation and pregnancy; however, research on their roles in different placental diseases is limited. It is believed that epigenetic alterations, such as DNA methylation, of placental imprinting genes may contribute to the different pathological features of severe placental diseases, such as pre-eclampsia (PE) and placenta accreta spectrum disorders (PAS). RESULTS: In this study, we conducted a comparative analysis of the methylation and expression of placental imprinted genes between PE and PAS using bisulfite sequencing polymerase chain reaction (PCR) and quantitative PCR, respectively. Additionally, we assessed oxidative damage of placental DNA by determining 8-hydroxy-2'-deoxyguanosine levels and fetal growth by determining insulin-like growth factor 2 (IGF2) and cortisol levels in the umbilical cord blood using enzyme-linked immunosorbent assay. Our results indicated that methylation and expression of potassium voltage-gated channel subfamily Q member 1, GNAS complex locus, mesoderm specific transcript, and IGF2 were significantly altered in both PE and PAS placentas. Additionally, our results revealed that the maternal imprinted genes were significantly over-expressed in PE and significantly under-expressed in PAS compared with a normal pregnancy. Moreover, DNA oxidative damage was elevated and positively correlated with IGF2 DNA methylation in both PE and PAS placentas, and cortisol and IGF2 levels were significantly decreased in PE and PAS. CONCLUSIONS: This study suggested that DNA methylation and expression of imprinted genes are aberrant in both PE and PAS placentas and that PE and PAS have different methylation profiles, which may be linked to their unique pathogenesis.


Assuntos
Metilação de DNA , Impressão Genômica , Fator de Crescimento Insulin-Like II , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Metilação de DNA/genética , Impressão Genômica/genética , Fator de Crescimento Insulin-Like II/genética , Pré-Eclâmpsia/genética , Adulto , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Placenta/metabolismo , Epigênese Genética/genética , Hidrocortisona/sangue , Doenças Placentárias/genética , Estresse Oxidativo/genética , Sangue Fetal/química , Sangue Fetal/metabolismo , Cromograninas , Proteínas , Canais de Potássio de Abertura Dependente da Tensão da Membrana
4.
Nat Cell Biol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251719

RESUMO

The ten-eleven translocation (TET) family of dioxygenases maintain stable local DNA demethylation during cell division and lineage specification. As the major catalytic product of TET enzymes, 5-hydroxymethylcytosine is selectively enriched at specific genomic regions, such as enhancers, in a tissue-dependent manner. However, the mechanisms underlying this selectivity remain unresolved. Here we unveil a low-complexity insert domain within TET2 that facilitates its biomolecular condensation with epigenetic modulators, such as UTX and MLL4. This co-condensation fosters a permissive chromatin environment for precise DNA demethylation. Disrupting low-complexity insert-mediated condensation alters the genomic binding of TET2 to cause promiscuous DNA demethylation and genome reorganization. These changes influence the expression of key genes implicated in leukaemogenesis to curtail leukaemia cell proliferation. Collectively, this study establishes the pivotal role of TET2 condensation in orchestrating precise DNA demethylation and gene transcription to support tumour cell growth.

5.
iScience ; 27(9): 110631, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39262804

RESUMO

Imbalanced dietary intake, such as a high-fat diet (HFD) during pregnancy, has been associated with adverse offspring outcomes. Metabolic stress from imbalanced food intake alters the function of epigenetic regulators, resulting in abnormal transcriptional outputs in embryos to cause congenital disorders. We report herein that maternal HFD exposure causes metabolic changes in pregnant mice and non-compaction cardiomyopathy (NCC) in E15.5 embryos, accompanied by decreased 5-hydroxymethylcytosine (5hmC) levels and altered chromatin accessibility in embryonic heart tissues. Remarkably, maternal vitamin C supplementation mitigates these detrimental effects, likely by restoring iron, a cofactor for Tet enzymes, in a reduced state. Using a genetic approach, we further demonstrated that the cardioprotective benefits of vitamin C under HFD conditions are attributable to enhanced Tet activity. Our results highlight an interaction between maternal diet, specifically HFD or vitamin C, and epigenetic modifications during early heart development, emphasizing the importance of balanced maternal nutrition for healthy embryonic development.

6.
Int J Antimicrob Agents ; 64(4): 107285, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39111708

RESUMO

OBJECTIVES: Colistin (COL) was once considered to be the last line of defence against multidrug-resistant bacteria belonging to the family Enterobacteriaceae. Due to the misuse of COL, COL-resistant (COL-R) Enterobacteriaceae have emerged. To address this clinical issue and combat COL resistance, novel approaches are urgently needed. METHODS: In this study, the in vitro and in vivo antimicrobial and antibiofilm effects of the immunomodulator AS101 were investigated in combination with COL against COL-R Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). RESULTS: Checkerboard assay, time-kill assay, and scanning electron microscopy confirmed the in vitro antimicrobial phenotype, whereas, crystal violet staining and multidimensional confocal laser scanning microscopy with live/dead staining confirmed the antibiofilm capability of the combination therapy. Moreover, the Galleria mellonella infection model and the mouse infection model indicated the high in vivo efficacy of the combination therapy. Additionally, cytotoxicity experiments performed using human kidney-derived HK-2 cells and haemolysis assays performed using human erythrocytes collectively demonstrated safety at effective combination concentrations. Furthermore, quantification of the expression of inflammatory cytokines via enzyme-linked immunosorbent assay confirmed the anti-inflammatory advantage of combination therapy. At the mechanistic level, changes in outer and inner membrane permeability and accumulation of ROS levels, which might be potential mechanisms for synergistic antimicrobial effects. CONCLUSIONS: This study found that AS101 can restore COL susceptibility in clinical COL-R E. coli and K. pneumoniae and also has synergistic antibiofilm and anti-inflammatory capabilities. This study provided a novel strategy to combat clinical infections caused by COL-R E. coli and K. pneumoniae.

7.
Plants (Basel) ; 13(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39124287

RESUMO

Crop rotation increases crop yield, improves soil health, and reduces plant disease. However, few studies were conducted on the use of intensive cropping patterns to improve the microenvironment of saline soils. The present study thoroughly evaluated the impact of a three-year maize-peanut-millet crop rotation pattern on the crop yield. The rhizosphere soil of the crop was collected at maturity to assess the effects of crop rotation on the composition and function of microbial communities in different tillage layers (0-20 cm and 20-40 cm) of sandy saline-alkaline soils. After three years of crop rotation, the maize yield and economic benefits rose by an average of 32.07% and 22.25%, respectively, while output/input grew by 10.26%. The pH of the 0-40 cm tillage layer of saline-alkaline soils decreased by 2.36%, organic matter rose by 13.44%-15.84%, and soil-available nutrients of the 0-20 cm tillage layer increased by 11.94%-69.14%. As compared to continuous cropping, crop rotation boosted soil nitrogen and phosphorus metabolism capacity by 8.61%-88.65%. Enrichment of Actinobacteria and Basidiomycota increased crop yield. Crop rotation increases microbial community richness while decreasing diversity. The increase in abundance can diminish competitive relationships between species, boost synergistic capabilities, alter bacterial and fungal community structure, and enhance microbial community function, all of which elevate crop yields. The obtained insights can contribute to achieving optimal management of intensive cultivation patterns and green sustainable development.

8.
Microorganisms ; 12(8)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39203462

RESUMO

Soil-borne diseases are exacerbated by continuous cropping and negatively impact maize health and yields. We conducted a long-term (11-year) field experiment in the black soil region of Northeast China to analyze the effects of different cropping systems on maize yield and rhizosphere soil fungal community structure and function. The experiment included three cropping systems: continuous maize cropping (CMC), maize-soybean rotation (MSR), and maize-soybean intercropping (MSI). MSI and MSR resulted in a 3.30-16.26% lower ear height coefficient and a 7.43-12.37% higher maize yield compared to CMC. The richness and diversity of rhizosphere soil fungi were 7.75-20.26% lower in MSI and MSR than in CMC. The relative abundances of Tausonia and Mortierella were associated with increased maize yield, whereas the relative abundance of Solicoccozyma was associated with decreased maize yield. MSI and MSR had higher proportions of wood saprotrophs and lower proportions of plant pathogens than CMC. Furthermore, our findings indicate that crop rotation is more effective than intercropping for enhancing maize yield and mitigating soil-borne diseases in the black soil zone of Northeast China. This study offers valuable insights for the development of sustainable agroecosystems.

9.
Environ Sci Technol ; 58(32): 14293-14305, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39093591

RESUMO

Environmentally persistent free radicals (EPFRs) play an important role in aerosol effects on air quality and public health, but their atmospheric abundance and sources are poorly understood. We measured EPFRs contained in PM2.5 collected in Fairbanks, Alaska, in winter 2022. We find that EPFR concentrations were enhanced during surface-based inversion and correlate strongly with incomplete combustion markers, including carbon monoxide and elemental carbon (R2 > 0.75). EPFRs exhibit moderately good correlations with PAHs, biomass burning organic aerosols, and potassium (R2 > 0.4). We also observe strong correlations of EPFRs with hydrocarbon-like organic aerosols, Fe and Ti (R2 > 0.6), and single-particle mass spectrometry measurements reveal internal mixing of PAHs, with potassium and iron. These results suggest that residential wood burning and vehicle tailpipes are major sources of EPFRs and nontailpipe emissions, such as brake wear and road dust, may contribute to the stabilization of EPFRs. Exposure to the observed EPFR concentrations (18 ± 12 pmol m-3) would be equivalent to smoking ∼0.4-1 cigarette daily. Very strong correlations (R2 > 0.8) of EPFR with hydroxyl radical formation in surrogate lung fluid indicate that exposure to EPFRs may induce oxidative stress in the human respiratory tract.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Madeira , Madeira/química , Alaska , Radicais Livres , Material Particulado , Monitoramento Ambiental , Aerossóis , Hidrocarbonetos Policíclicos Aromáticos/análise
10.
Biosens Bioelectron ; 263: 116622, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39096762

RESUMO

Accurate on-site detection of nitrite in complex matrices remains a significant challenge. Herin, we construct a self-ratio optical bimodal portable kit via co-assembling NaErF4:0.5%Tm@NaYF4@NaYbF4:0.5%Tm@NaYF4 (Er:Tm@Yb:Tm) and nitrogen-doped carbon platinum nanomaterials (Pt/CN) in sodium alginate (SA) hydrogel. Pt/CN nanomaterials are synthesized by high-temperature sintering using a zinc-based zeolite imidazolium framework as a sacrificial template. The Pt/CN nanozyme possesses excellent oxidase-like activity to produce the oxidation state 3,3',5,5'-tetramethylbenzidine (oxTMB). Nitrite mediates diazotization of oxTMB to trigger the change of absorption signals, accompanying the ratio fluorescence response of the Er:Tm@Yb:Tm. Crucially, Er:Tm@Yb:Tm and Pt/CN are embedded in SA hydrogel to fabricate a portable kit with efficient and sensitive performance. An image processing algorithm is used to analyze the nitrite-induced signal change of the portable hydrogel kit, resulting in detection limits of 0.63 µM. This method has great potential for point-of-care applications due to its reliability, long-term stability, accuracy, sensitivity, and portability.


Assuntos
Técnicas Biossensoriais , Hidrogéis , Limite de Detecção , Nitritos , Smartphone , Técnicas Biossensoriais/métodos , Nitritos/análise , Hidrogéis/química , Humanos , Benzidinas/química , Nanoestruturas/química , Platina/química
11.
Adv Mater ; : e2406618, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39205536

RESUMO

Stimuli-responsive ultralong organic phosphorescence (UOP) materials that in response to external factors such as light, heat, and atmosphere have raised a tremendous research interest in fields of optoelectronics, anticounterfeiting labeling, biosensing, and bioimaging. However, for practical applications in life and health fields, some fundamental requirements such as biocompatibility and biodegradability are still challenging for conventional inorganic and aromatic-based stimuli-responsive UOP systems. Herein, an edible excipient, sodium carboxymethyl cellulose (SCC), of which UOP properties exhibit intrinsically multistimuli responses to excited wavelength, pressure, and moisture, is reported. Impressively, as a UOP probe, SCC enables nondestructive detection of hardness with superb contrast (signal-to-background ratio up to 120), while exhibiting a response sensitivity to moisture that is more than 5.0 times higher than that observed in conventional fluorescence. Additionally, its applicability for hardness monitoring and high-moisture warning for tablets containing a moisture-sensitive drug, with the quality of the drug being determinable through the naked-eye visible UOP, is demonstrated. This work not only elucidates the reason for stimulative corresponding properties in SCC but also makes a major step forward in extending the potential applications of stimuli-responsive UOP materials in manufacturing high-quality and safe medicine.

12.
ACS EST Air ; 1(7): 646-659, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39021670

RESUMO

Hydroxymethanesulfonate (HMS) in fine aerosol particles has been reported at significant concentrations along with sulfate under extreme cold conditions (-35 °C) in Fairbanks, Alaska, a high latitude city. HMS, a component of S(IV) and an adduct of formaldehyde and sulfur dioxide, forms in liquid water. Previous studies may have overestimated HMS concentrations by grouping it with other S(IV) species. In this work, we further investigate HMS and the speciation of S(IV) through the Alaskan Layered Pollution and Chemical Analysis (ALPACA) intensive study in Fairbanks. We developed a method utilizing hydrogen peroxide to isolate HMS and found that approximately 50% of S(IV) is HMS for total suspended particulates and 70% for PM2.5. The remaining unidentified S(IV) species are closely linked to HMS during cold polluted periods, showing strong increases in concentration relative to sulfate with decreasing temperature, a weak dependence on particle water, and similar particle size distributions, suggesting a common aqueous formation process. A portion of the unidentified S(IV) may originate from additional aldehyde-S(IV) adducts that are unstable in the water-based chemical analysis process, but further chemical characterization is needed. These results show the importance of organic S(IV) species in extreme cold environments that promote unique aqueous chemistry in supercooled liquid particles.

13.
Langmuir ; 40(28): 14623-14632, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38966998

RESUMO

The toxic gases emitted from industrial production have caused significant damage to the environment and human health, necessitating efficient gas sensors for their detection and removal. In this work, first-principles calculations are employed to investigate the potential application of diamanes for high-performance toxic gas sensors. The results show that nine gas molecules (CO, CO2, NO, NO2, NH3, SO2, N2, O2, and H2O) are physisorbed on pristine diamane by weak van der Waals interactions. After introducing H/F defects, diamane can effectively capture specific toxic gases (CO, NO, NO2, and SO2) in the presence of interfering gases (N2, O2, and H2O), suggesting excellent selectivity and anti-interference ability. Orbital hybridization and significant charge redistribution between gas molecules and defective diamane dominate the enhanced adsorbate-substrate interactions. More importantly, the high sensitivity and good reversibility of defective diamane for detecting CO, NO, and SO2 molecules enable its reuse as a superior resistance-type gas sensor. Our calculations provide valuable insights into the potential of defective diamane for detecting toxic gases and shed light on the practical application of novel carbon-based materials in the gas-sensing field.

14.
Sci Adv ; 10(25): eadl1896, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896621

RESUMO

Skin-like soft optical metamaterials with broadband modulation have been long pursued for practical applications, such as cloaking and camouflage. Here, we propose a skin-like metamaterial for dual-band camouflage based on unique Au nanoparticles assembled hollow pillars (NPAHP), which are implemented by the bottom-up template-assisted self-assembly processes. This dual-band camouflage realizes simultaneously high visible absorptivity (~0.947) and low infrared emissivity (~0.074/0.045 for mid-/long-wavelength infrared bands), ideal for visible and infrared dual-band camouflage at night or in outer space. In addition, this self-assembled metamaterial, with a micrometer thickness and periodic through-holes, demonstrates superior skin-like attachability and permeability, allowing close attachment to a wide range of surfaces including the human body. Last but not least, benefiting from the extremely low infrared emissivity, the skin-like metamaterial exhibits excellent high-temperature camouflage performance, with radiation temperature reduction from 678 to 353 kelvin. This work provides a new paradigm for skin-like metamaterials with flexible multiband modulation for multiple application scenarios.

15.
Small ; : e2402320, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881259

RESUMO

Nanozyme-mediated chemodynamic therapy has emerged as a promising strategy due to its tumor specificity and controlled catalytic activity. However, the poor efficacy caused by low hydrogen peroxide (H2O2) levels in the tumor microenvironment (TME) poses challenges. Herein, an H2O2 self-supplying nanozyme is constructed through loading peroxide-like active platinum nanoparticles (Pt NPs) on zinc peroxide (ZnO2) (denoted as ZnO2@Pt). ZnO2 releases H2O2 in response to the acidic TME. Pt NPs catalyze the hydroxyl radical generation from H2O2 while reducing the mitigation of oxidative stress by glutathione, serving as a reactive oxygen (ROS) amplifier through self-cascade catalysis. In addition, Zn2+ released from ZnO2 interferes with tumor cell energy supply and metabolism, enabling ion interference therapy to synergize with chemodynamic therapy. In vitro studies demonstrate that ZnO2@Pt induces cellular oxidative stress injury through enhanced ROS generation and Zn2+ release, downregulating ATP and NAD+ levels. In vivo assessment of anticancer effects showed that ZnO2@Pt could generate ROS at tumor sites to induce apoptosis and downregulate energy supply pathways associated with glycolysis, resulting in an 89.7% reduction in tumor cell growth. This study presents a TME-responsive nanozyme capable of H2O2 self-supply and ion interference therapy, providing a paradigm for tumor-specific nanozyme design.

16.
Food Res Int ; 187: 114455, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763691

RESUMO

Dendrobium officinale flower tea (DFT) is a traditional health product of geographical identity known for its unique aroma and taste. The effects of different drying methods on sensory properties, metabolic profiles and antioxidant activity of DFT were compared using sensomics and metabolomics approaches. Twenty-seven aroma-active compounds were identified and more than half of the volatiles responsible for the "green" and "floral" scent lost after drying. Sensory evaluations revealed that vacuum freeze-dried DFT showed a significant preference in taste and fifty-eight metabolites with higher levels of glutamine were observed, possibly contributing to a "fresh" taste and increased preference. Among the three drying methods, natural air drying retained the fresh flower scent better, while freeze drying preserved the color and shape of the flowers better and enhanced the taste and antioxidant activity of DFT. The research results may provide a foundation for the selection of DFT processing method and quality detection.


Assuntos
Antioxidantes , Dendrobium , Flores , Metabolômica , Odorantes , Paladar , Antioxidantes/análise , Odorantes/análise , Metabolômica/métodos , Flores/química , Humanos , Dendrobium/química , Masculino , Adulto , Feminino , Compostos Orgânicos Voláteis/análise , Dessecação/métodos , Liofilização , Adulto Jovem , Manipulação de Alimentos/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-38643258

RESUMO

A novel multi-functional micelle delivery system was developed for enhancing the oral absorption of paclitaxel (PTX). The delivery carriers were constructed by modifying chitosan-stearic acid (CS-SA) micelles with L-carnitine (LC) and co-encapsulating quercetin (Que), and the PTX-loaded micelles were prepared by film-sonication dispersing technique. The as-prepared micelles showed homogeneous spherical shapes with a small particle size of 148.3 ± 1.7 nm, high drug loading of 7.05% and low critical micelle concentration (CMC) of 16.89 µg/ml. Compared to the in-house PTX formulation similar to the commercial injection Taxol™, the target PTX-loaded micelles had obvious sustained-release effects and exhibited an oral relative bioavailability of 168.08%. The cellular uptake studies of Caco-2 cells confirmed the micellar modification of LC and the co-loading of Que played important roles in promoting the absorption of drug loaded in micelles. The CYP3A4 enzyme test demonstrated the micelles had an inhibitory effect on the metabolic enzyme due to the presence of Que. These findings confirmed the potential of the multi-functional chitosan polymeric micelles based on synergistic effect as an effective oral delivery system.

18.
Pathol Res Pract ; 257: 155325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678850

RESUMO

BACKGROUND: The abnormal expression of circular RNA (circRNA) has been confirmed to be closely related to the development of many human diseases including gastric adenocarcinoma (GA). This study aimed to elucidate the molecular mechanism and biological function of hsa_circ_0094976 (circ_0094976) in GA. METHODS: The expression of circ_0094976, miR-223-3p, and G protein-coupled receptor 155 (GPR155) mRNA was measured by quantitative real-time polymerase chain reaction. Cell viability, cell proliferation, colony formation, migration, and invasion were estimated by cell counting kit-8 assay, 5-Ethynyl-2'-deoxyuridine assay, colony formation assay, and transwell assay, respectively. The bioinformatics analysis, dual-luciferase reporter assay, and RNA pull-down assay were used for predicting and verifying the interaction of the circ_0094976/miR-223-3p/GPR155 axis. A xenograft mouse model was performed in nude mice to reveal the role of circ_0094976 in vivo. RESULTS: Circ_0094976 was down-regulated in GA tissues and GA cell lines compared to normal controls. Overexpression of circ_0094976 inhibited the GA cell growth, migration, and invasion in vitro, and tumor growth in vivo. Circ_0094976 directly targeted miR-223-3p, and GPR155 was a direct target of miR-223-3p. Moreover, circ_0094976 sponging miR-223-3p to increase the expression of GPR155. CONCLUSION: We disclosed that circ_0094976 could act as a sponge of miR-223-3p to regulate the expression of GPR155, and further restrain the development of GA, which may provide new insight into the therapy of GA.


Assuntos
Adenocarcinoma , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Circular , Receptores Acoplados a Proteínas G , Neoplasias Gástricas , Animais , Humanos , Masculino , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
19.
Adv Mater ; : e2401094, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684182

RESUMO

Intra-articular injection of drugs is an effective strategy for osteoarthritis (OA) treatment. However, the complex microenvironment and limited joint space result in rapid clearance of drugs. Herein, a nanogel-based strategy is proposed for prolonged drug delivery and microenvironment remodeling. Nanogel is constructed through the functionalization of hyaluronic acid (HA) by amide reaction on the surface of Kartogenin (KGN)-loaded zeolitic imidazolate framework-8 (denoted as KZIF@HA). Leveraging the inherent hydrophilicity of HA, KZIF@HA spontaneously forms nanogels, ensuring extended drug release in the OA microenvironment. KZIF@HA exhibits sustained drug release over one month, with low leakage risk from the joint cavity compared to KZIF, enhanced cartilage penetration, and reparative effects on chondrocytes. Notably, KGN released from KZIF@HA serves to promote extracellular matrix (ECM) secretion for hyaline cartilage regeneration. Zn2+ release reverses OA progression by promoting M2 macrophage polarization to establish an anti-inflammatory microenvironment. Ultimately, KZIF@HA facilitates cartilage regeneration and OA alleviation within three months. Transcriptome sequencing validates that KZIF@HA stimulates the polarization of M2 macrophages and secretes IL-10 to inhibit the JNK and ERK pathways, promoting chondrocytes recovery and enhancing ECM remodeling. This pioneering nanogel system offers new therapeutic opportunities for sustained drug release, presenting a significant stride in OA treatment strategies.

20.
ACS EST Air ; 1(3): 175-187, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38482267

RESUMO

The oxidative potential (OP) of outdoor PM2.5 in wintertime Fairbanks, Alaska, is investigated and compared to those in wintertime Atlanta and Los Angeles. Approximately 40 filter samples collected in January-February 2022 at a Fairbanks residential site were analyzed for OP utilizing dithiothreitol-depletion (OPDTT) and hydroxyl-generation (OPOH) assays. The study-average PM2.5 mass concentration was 12.8 µg/m3, with a 1 h average maximum of 89.0 µg/m3. Regression analysis, correlations with source tracers, and contrast between cold and warmer events indicated that OPDTT was mainly sensitive to copper, elemental carbon, and organic aerosol from residential wood burning, and OPOH to iron and organic aerosol from vehicles. Despite low photochemically-driven oxidation rates, the water-soluble fraction of OPDTT was unusually high at 77%, mainly from wood burning emissions. In contrast to other locations, the Fairbanks average PM2.5 mass concentration was higher than Atlanta and Los Angeles, whereas OPDTT in Fairbanks and Atlanta were similar, and Los Angeles had the highest OPDTT and OPOH. Site differences were observed in OP when normalized by both the volume of air sampled and the particle mass concentration, corresponding to exposure and the intrinsic health-related properties of PM2.5, respectively. The sensitivity of OP assays to specific aerosol components and sources can provide insights beyond the PM2.5 mass concentration when assessing air quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA