RESUMO
Glucose sensors are essential tools for monitoring blood glucose concentration in diabetic patients. In recent years, with the increasing number of individuals suffering from diabetes, blood glucose monitoring has become extremely necessary, which expedites the iteration and upgrade of glucose sensors greatly. Currently, two main types of glucose sensors are available for blood glucose testing: enzyme-based glucose sensor (EBGS) and enzyme-free glucose sensor (EFGS). For EBGS, several progresses have been made to comprehensively improve detection performance, ranging from enhancing enzyme activity, thermostability, and electron transfer properties, to introducing new materials with superior properties. For EFGS, more and more new metallic materials and their oxides are being applied to further optimize its blood glucose monitoring. Here the latest progress of electrochemical glucose sensors, their manufacturing methods, electrode materials, electrochemical parameters, and applications were summarized, the development glucose sensors with various noninvasive sampling modes were also compared.
Assuntos
Técnicas Biossensoriais , Glicemia , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Glicemia/análise , Humanos , Catálise , Eletrodos , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Diabetes Mellitus/diagnóstico , Glucose/análise , Glucose/metabolismoRESUMO
The spatial layout of the air quality monitoring network (AQMN) is crucial for objective, accurate, and comprehensive air quality assessment. The current technical standard specified the minimum quantity requirements for air quality monitoring sites, but there were no standards to specify the spatial of monitoring sites. This study proposed a novel framework to evaluate and optimize the spatial layout of AQMN. First, this study proposed three indicators to evaluate the performance of the current AQMN. They were monitoring area repetition rate, population coverage rate, and correlations. The assessment of AQMN in Beijing-Tianjin-Hebei and surroundings areas (BTHs) showed the overall monitoring area repetition rate and population coverage rate was 81.07 % and 35.5 %, respectively, which means the current AQMN in BTHs has very high monitoring repeatability and limited population coverage. Secondly, a large-scale linear programming model was built to optimize the spatial layout and determine the spatial location of 279 newly added monitoring sites in BTHs according to the Environmental Monitoring 14th Five-Year Plan of China. The optimization results showed that the optimized AQMN covered 97 million additional people, and the population coverage rate increased to 49.5 %. The proposed framework provided a valuable tool to evaluate and optimize AQMN and could be a potential solution for developing new technical standards of AQMN.
RESUMO
Seaweeds, as marine photosynthetic organisms, are harvested by humans from the wild or through cultivation for various production purposes and to provide a range of marine ecosystem services, including nutrient removal, oxygen production, and carbon sequestration. The potential use of cultivated seaweed in mitigating carbon dioxide (CO2) has been extensively proposed in conjunction with commercial seaweed production worldwide. This study aims to assess the annual potential and benefits of cultivated seaweed in reducing and fixing anthropogenic CO2. Over the past two decades (2000-2019), global seaweed production has seen significant growth. The total output of cultivated seaweed reached 407.4 × 107 tons (t), with coastal mariculture removing 4.26 × 107 t of carbon annually and wild capture removing 2.24 × 106 t. The recalcitrant dissolved organic carbon (RDOC, 549.88-621.60 × 104 t) plays a significant role in the carbon sinks of seaweed cultivation. The substantial benefits of carbon sink resulting from the formation of RDOC from seaweed make up a considerable proportion in the calculation of carbon sequestration and sink enhancement benefits in large-scale seaweed cultivation. The sizable carbon sink base of seaweed cultivation (8631.90-9567.37 × 104 t) results in significant carbon fixation benefits. The total economic value of carbon sequestration and oxygen production was estimated at $70.36 ± 1.52 billion, with an annual average benefit of $3.52 ± 1.70 billion. Increasing the area and yield available for cultivated seaweed has the potential to enhance biomass production, carbon accumulation, and CO2 drawdown. It is crucial to emphasize the need for improved communication regarding the essential criteria for the feasibility of CO2 removal (CDR), with a focus on conducting life cycle assessments (LCA) when utilizing marine processes in the present and future work. The sustainable development of the seaweed cultivation industry not only ensures that Asian-Pacific countries remain leaders in this field but also provides an effective yet overlooked solution to excessive CO2 emissions worldwide.
RESUMO
Chemotherapy resistance is an important factor responsible for the low 5-year survival rate of hepatocellular carcinoma (HCC) patients. Ubiquitin-conjugating enzyme E2N (UBE2N) is a cancer-associated ubiquitin-conjugating enzyme that is expressed in HCC tissues, and its high expression is associated with a poor prognosis. This study explored the role played by UBE2N in development of 5-fluorouracil (5-FU) resistance in HCC cells. Three HCC cell lines (HepG2 [p53 wild type], Huh7 [p53 point mutant type], Hep3B [p53 non-expression type]), and one normal liver cell line (MIHA) were used in our present study. The IC50 value of 5-FU was determined using a cell counting kit-8 (CCK-8) assay. Cell viability was assessed by colony formation assays. TUNEL assays and flow cytometry were used to analyze cell apoptosis. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to confirm the binding relationship between UBE2N mRNA and TAF15 protein. Our results showed that TAF15 and UBE2N were highly expressed in HCC cells. UBE2N inhibited the translocation of p53 protein into the cell nucleus to increase 5-FU resistance, as reflected by an increased IC50 value, an increase in cell viability, and a reduction in cell apoptosis. Overexpression of p53 reduced 5-FU resistance, but that effect could be reversed by UBE2N overexpression. TAF15 protein bound to and stabilized UBE2N mRNA, thereby inhibiting p53 translocation into the nucleus and promoting 5-FU resistance in HCC cells. Collectively, our present study identified a novel mechanism by which TAF15/UBE2N regulates p53 distribution to increase 5-FU resistance. Our results also suggest potential therapeutic strategies for treating HCC.
RESUMO
Seaweed debris is susceptible to being buried in sediments due to natural environmental changes and human activities. So far, the effect of buried seaweeds on the environment and its decomposition mechanism remains unclear. This study simulated the decomposition of seaweed Gracilariopsis lemaneiformis for 180 days with different burial depths (0 cm and 10 cm) and burial weights (10 g and 20 g). Our findings revealed that compared with Gracilariopsis decomposition on the sediment surface, the seaweed buried in sediment slowed down the release of N, P, and dissolved organic carbon (DOC) by enhancing the activity of diverse anaerobic microbes (i.e. Draconibacterium, Desulfuromusa, Sediminispirochaeta), which were associated with organic matter decomposition. The enhanced burial quantity of Gracilariopsis resulted in a 3.28 % increase in sediment OC and enriched the humification degree of DOC in seawater. These results highlight the role of seaweed burial in enhancing OC sequestration in marine environments.
Assuntos
Carbono , Sedimentos Geológicos , Água do Mar , Alga Marinha , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Água do Mar/química , Nutrientes , Nitrogênio/análise , Fósforo/análiseRESUMO
Plasma membrane intrinsic proteins (PIPs), a subclass of aquaporins, play an important role in plant immunity by acting as H2O2 transporters. Their homeostasis is mostly maintained by C-terminal serine phosphorylation. However, the kinases that phosphorylate PIPs and manipulate their turnover are largely unknown. Here, we found that Arabidopsis thaliana PIP2;7 positively regulates plant immunity by transporting H2O2. Arabidopsis CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28) directly interacts with and phosphorylates PIP2;7 at Ser273/276 to induce its degradation. During pathogen infection, CPK28 dissociates from PIP2;7 and destabilizes, leading to PIP2;7 accumulation. As a countermeasure, oomycete pathogens produce conserved kinase effectors that stably bind to and mediate the phosphorylation of PIP2;7 to induce its degradation. Our study identifies PIP2;7 as a novel substrate of CPK28 and shows that its protein stability is negatively regulated by CPK28. Such phosphorylation could be mimicked by Phytophthora kinase effectors to promote infection. Accordingly, we developed a strategy to combat oomycete infection using a phosphorylation-resistant PIP2;7S273/276A mutant. The strategy only allows accumulation of PIP2;7S273/276A during infection to limit potential side effects on normal plant growth.
RESUMO
Our previous research revealed the apoptosis-inhibiting effect of lncRNA FAM230B in gastric cancer (GC). While its role on ferroptosis of GC remain unexplored. In this study, the m6A level and RNA stability regulation of METTL3 on FAM230B was detected by m6A quantification, stability assays, MeRIP, and their interaction was confirmed by RIP, and RNA pull-down assays. The level of ferroptosis was detected by flow cytometry, MDA and GSH level assessments, and electron microscopy. Gene expression was detected by quantitative real-time PCR, western blot, and immunofluorescence. The miR-27a-5p and BTF3 interaction was predicted with TargetScan and confirmed by dual-luciferase assay. Here, elevated levels of METTL3 and FAM230B were observed in GC tissues and cell lines. METTL3 was confirmed to bind with FAM230B RNA. Furthermore, silencing METTL3 reduced FAM230B m6A levels and stability, leading to decreased FAM230B and increased miR-27a-5p expressions. FAM230B knockdown favored ferroptosis and increased BTF3 expression, while its overexpression mitigated erastin-induced ferroptosis in GC cells. Additionally, BTF3 overexpression was found to negate miR-27a-5p's ferroptosis-promoting effects in GC cells. Collectively, our study demonstrates that the m6A modification of FAM230B by METTL3 plays a crucial role in promoting GC progression by reducing ferroptosis, through the modulation of the miR-27a-5p/BTF3 axis.
Assuntos
Ferroptose , Regulação Neoplásica da Expressão Gênica , Metiltransferases , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Linhagem Celular Tumoral , Ferroptose/genética , Metiltransferases/metabolismo , Metiltransferases/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismoRESUMO
The plant root absorbs water and nutrients, anchors the plant in the soil, and promotes plant development. Root is developed from root apical meristem (RAM), which is formed during embryo stage and is maintained by dividing stem cells. Plant hormones have a predominant role in RAM maintenance. This review evaluates the functional crosstalk among three major hormones (auxin, cytokinin, and brassinolide) in RAM development in Arabidopsis, integrating a variety of experimental data into a regulatory network and revealing multiple layers of complexity in the crosstalk among these three hormones. We also discuss possible directions for future research on the roles of hormones in regulating RAM development and maintenance.
Assuntos
Arabidopsis , Reguladores de Crescimento de Plantas , Raízes de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/crescimento & desenvolvimento , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Brassinosteroides/metabolismoRESUMO
Fermentation is an important concoction technique for botanical drugs. Fermentation transforms and enhances the active ingredients of botanical drugs through specific microbiological processes, ultimately affecting their pharmacological effects. This review explores the use of fermented botanical drugs in areas such as anti-tumor, hypolipidemic, antioxidant, antimicrobial, cosmetology, and intestinal flora regulation. It elucidates the potential pharmacological mechanisms and discusses the benefits of fermentation technology for botanical drugs, including reducing toxic side effects, enhancing drug efficacy, and creating new active ingredients. This article also discussesdelves into the common strains and factors influencing the fermentation process, which are crucial for the successful transformation and enhancement of these drugs. Taken together, this study aimed to provide a reference point for further research and wider applications of botanical drug fermentation technology.
RESUMO
The gas-phase heterodinuclear gold-nickel carbonyl AuNi(CO)n- (n = 2-3) anion complexes were mass-selected and studied by using photoelectron velocity-map imaging spectroscopy in combination with quantum-chemical calculations, which can establish both the geometries and electronic structures of these anions. These complexes are all confirmed to be singlet ground states with one gold atom bonded at the central nickel atom of the Ni(CO)n moieties. Further bonding analyses indicate that unlike the alkali-metals as covalently bonded ligands to form the electron-sharing alkali-metal-nickel bonding in the alkali-metal-nickel carbonyl anionic complexes, the Au atom in the AuNi(CO)n- complexes serves as a datively bound ligand for Ni(CO)n to form gold-to-nickel dative bonding.
RESUMO
Myeloid-derived growth factor (MYDGF) is a cytokine that exhibits a variety of biological functions. This study focused on utilizing BL21(DE3) strain engineering and fermentation strategies to achieve high-level expression of soluble human MYDGF (hMYDGF) in Escherichia coli. Initially, the E. coli expressing strain BL21(DE3) was engineered by deleting the IpxM gene and inserting the GROEL/S and Trigger factor genes. The engineered E. coli strain BL21(TG)/pT-MYDGF accumulated 3557.3 ± 185.6 µg/g and 45.7 ± 6.7 mg/L of soluble hMYDGF in shake flask fermentation, representing a 15.6-fold increase compared to the control strain BL21(DE3)/pT-MYDGF. Furthermore, the yield of hMYDGF was significantly enhanced by optimizing the fermentation conditions. Under optimized conditions, the 5L bioreactor yielded up to 2665.8 ± 164.3 µg/g and 407.6 ± 42.9 mg/L of soluble hMYDGF. The results indicate that the implementation of these optimization strategies could enhance the ratio and yield of soluble proteins expressed by E.coli, thereby meeting the demands of industrial production. This study employed sophisticated strategies to lay a solid foundation for the industrial application of hMYDGF.
Assuntos
Escherichia coli , Fermentação , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Solubilidade , Reatores Biológicos , Expressão GênicaRESUMO
Methane emissions from ruminants significantly contribute to greenhouse gases. This study explores the methane mitigation effect and mechanism of S. mcclurei through in vitro rumen fermentation, aiming to establish its potential as a feed additive. We investigated the effects of freeze-dried and dried S. mcclurei at supplementation levels of 2%, 5%, and 10% of dry matter on nutrient degradation, ruminal fermentation, methane inhibition, and microbial community structure in in vitro rumen fermentation. The freeze-dried S. mcclurei at 2% supplementation significantly reduced CH4 emissions by 18.85% and enhanced crude protein degradability. However, total VFA and acetate concentrations were lower in both treatments compared to the control. The microbial shifts included a decrease in Lachnospiraceae_NK3A20_group and Ruminococcus and an increase in Selenomonas, Succinivibrio, and Saccharofermentans, promoting propionate production. Additionally, a significant reduction in Methanomicrobium was observed, indicating direct methane mitigation. Freeze-dried S. mcclurei at a 2% supplementation level shows potential as an effective methane mitigation strategy with minimal impact on rumen fermentation, supported by detailed insights into microbial community changes.
RESUMO
Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.
Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Mioblastos , RNA Circular , Animais , Masculino , Camundongos , Linhagem Celular , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia , Mioblastos/metabolismo , Mioblastos/citologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.
Assuntos
Autofagia , Endossomos , Peptídeos , Animais , Peptídeos/metabolismo , Endossomos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Ativo do Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Enterócitos/metabolismo , Modelos Animais de Doenças , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismoRESUMO
Consumed VOCs are the compounds that have reacted to form ozone and secondary organic aerosol (SOA) in the atmosphere. An approach that can apportion the contributions of primary sources and reactions to the consumed VOCs was developed in this study and applied to hourly VOCs data from June to August 2022 measured in Shijiazhuang, China. The results showed that petrochemical industries (36.9 % and 51.7 %) and oxidation formation (20.6 % and 35.6 %) provided the largest contributions to consumed VOCs and OVOCs during the study period, whereas natural gas (5.0 % and 7.6 %) and the mixed source of liquefied petroleum gas and solvent use (3.1 % and 4.2 %) had the relatively low contributions. Compared to the non-O3 pollution (NOP) period, the contributions of oxidation formation, petrochemical industries, and the mixed source of gas evaporation and vehicle emissions to the consumed VOCs during the O3 pollution (OP) period increased by 2.8, 3.8, and 9.3 times, respectively. The differences in contributions of liquified petroleum gas and solvent use, natural gas, and combustion sources to consumed VOCs between OP and NOP periods were relatively small. Transport of petrochemical industries emissions from the southeast to the study site was the primary consumed pathway for VOCs emitted from petrochemical industries.
RESUMO
The oriented attachment (OA) of nanoparticles (NPs) is an important crystal growth mechanism in many materials. However, a comprehensive understanding of the atomic-scale alignment and attachment processes is still lacking. We conducted in situ atomic resolution studies using high-resolution transmission electron microscopy to reveal how two Pt NPs coalesce into a single particle via OA, which involves the formation of atomic-scale links and a grain boundary (GB) between the NPs, as well as GB migration. Density functional theory calculations showed that the system energy changes as a function of the number of disconnections during the coalescence process. Additionally, the formation and annihilation processes of disconnection are always accompanied by the cooperative reorientation motion of atoms. These results further elucidate the growth mechanism of OA at the atomic scale, providing microscopic insights into OA dynamics and a framework for the development of processing strategies for nanocrystalline materials.
RESUMO
As a major worldwide root crop, the mechanism underlying storage root yield formation has always been a hot topic in sweet potato [Ipomoea batatas (L.) Lam.]. Previously, we conducted the transcriptome database of differentially expressed genes between the cultivated sweet potato cultivar "Xushu18," its diploid wild relative Ipomoea triloba without storage root, and their interspecific somatic hybrid XT1 with medium-sized storage root. We selected one of these candidate genes, IbNF-YA1, for subsequent analysis. IbNF-YA1 encodes a nuclear transcription factor Y subunit alpha (NF-YA) gene, which is significantly induced by the natural auxin indole-3-acetic acid (IAA). The storage root yield of the IbNF-YA1 overexpression (OE) plant decreased by 29.15-40.22% compared with the wild type, while that of the RNAi plant increased by 10.16-21.58%. Additionally, IAA content increased significantly in OE plants. Conversely, the content of IAA decreased significantly in RNAi plants. Furthermore, real-time quantitative reverse transcription-PCR (qRT-PCR) analysis demonstrated that the expressions of the key genes IbYUCCA2, IbYUCCA4, and IbYUCCA8 in the IAA biosynthetic pathway were significantly changed in transgenic plants. The results indicated that IbNF-YA1 could directly target IbYUCCA4 and activate IbYUCCA4 transcription. The IAA content of IbYUCCA4 OE plants increased by 71.77-98.31%. Correspondingly, the storage root yield of the IbYUCCA4 OE plant decreased by 77.91-80.52%. These findings indicate that downregulating the IbNF-YA1 gene could improve the storage root yield in sweet potato.
Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Proteínas de Plantas , Raízes de Plantas , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Ácidos Indolacéticos/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente ModificadasRESUMO
BACKGROUND: Numerous studies have been conducted on the effect of the stapes superstructure after ossicular chain reconstruction, but the findings are not uniform. OBJECTIVE: To compare the hearing outcomes of ossicular chain reconstruction with partial ossicular replacement prosthesis (PORP) or total ossicular replacement prosthesis (TORP) under otoendoscopy. MATERIALS AND METHODS: The records of 111 patients diagnosed with chronic suppurative otitis media were retrospectively analyzed. These patients were divided into PORP group (n = 57) and TORP group (n = 54). They were further subdivided into subgroups PORP-a (with a malleus handle) and PORP-b (without a malleus handle), subgroups TORP-a and TORP-b. Pre- and postoperative audiometric results were analyzed. RESULTS: The mean postoperative air conduction hearing thresholds improvement, mean air-bone gap improvement, and the success rate of reconstruction were significantly higher in the PORP group than in the TORP group (p < .05). The mean postoperative air conduction hearing thresholds improvement and the success rate of reconstruction were significantly higher in the PORP-a group than in the TORP-a group (p < .05); and similar results were concluded in comparison of the PORP-b group and the TORP-b group. CONCLUSIONS AND SIGNIFICANCE: The stapes superstructure has an important positive effect on the postoperative outcome of endoscopic ossicular chain reconstruction.
Assuntos
Prótese Ossicular , Substituição Ossicular , Humanos , Feminino , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Adulto , Substituição Ossicular/métodos , Idoso , Endoscopia/métodos , Otite Média Supurativa/cirurgia , Adulto Jovem , Ossículos da Orelha/cirurgia , Adolescente , EstriboRESUMO
Mass-selected photoelectron velocity-map imaging spectroscopy was employed to investigate the geometrical and electronic properties of AuS2H-/0. The comprehensive comparison between the experiment and theoretical calculations establishes that the ground-state AuS2H- anion has a mixed-ligand structure [SAuSH]- with an unsymmetrical S-Au-S unit. Further chemical bonding analyses on AuS2H and comparison with the isoelectronic AuS2- suggest that the unique S-Au-S unit in these species features two three-center, three-electron π-bonding, and one three-center, two-electron σ-bonding. The isoelectronic replacement of the extra electron in AuS2- by the H atom can lead to σ bonding evolution from the electron-sharing bond to the dative bond. These findings are conducive to the fundamental understanding of the intrinsic stability of thiolate-protected gold nanoclusters and their delicate ligand design to achieve desirable properties.
RESUMO
Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most widely cultivated crops in the world, with outstanding stress tolerance, but drought stress can lead to a significant decrease in its yield. To reveal the response mechanism of sweet potato to drought stress, an integrated physiological, transcriptome and metabolome investigations were conducted in the leaves of two sweet potato varieties, drought-tolerant zhenghong23 (Z23) and a more sensitive variety, jinong432 (J432). The results for the physiological indexes of drought showed that the peroxidase (POD) and superoxide dismutase (SOD) activities of Z23 were 3.68 and 1.21 times higher than those of J432 under severe drought, while Z23 had a higher antioxidant capacity. Transcriptome and metabolome analysis showed the importance of the amino acid metabolism, respiratory metabolism, and antioxidant systems in drought tolerance. In Z23, amino acids such as asparagine participated in energy production during drought by providing substrates for the citrate cycle (TCA cycle) and glycolysis (EMP). A stronger respiratory metabolism ability could better maintain the energy supply level under drought stress. Drought stress also activated the expression of the genes encoding to antioxidant enzymes and the biosynthesis of flavonoids such as rutin, resulting in improved tolerance to drought. This study provides new insights into the molecular mechanisms of drought tolerance in sweet potato.