RESUMO
Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase 1 clinical trial investigating a ferritin nanoparticle vaccine displaying H2 hemagglutinin (HA) in H2-naive and H2-exposed adults enabled us to perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited. We temporally map the epitopes targeted by serum antibodies after vaccine prime and boost, revealing that previous H2 exposure results in higher responses to the variable HA head domain. In contrast, initial responses in H2-naive participants are dominated by antibodies targeting conserved epitopes. We use cryoelectron microscopy and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the HA head, including the receptor-binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses post-vaccination.
Assuntos
Anticorpos Antivirais , Memória Imunológica , Vírus da Influenza A Subtipo H2N2 , Vacinas contra Influenza , Vacinação , Humanos , Anticorpos Antivirais/imunologia , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H2N2/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Formação de Anticorpos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Epitopos/imunologia , Adulto , Linfócitos B/imunologiaRESUMO
Nanoparticle-based vaccines offer a multivalent approach for antigen display, efficiently activating T and B cells in the lymph nodes. Among various nanoparticle design strategies, DNA nanotechnology offers an innovative alternative platform, featuring high modularity, spatial addressing, nanoscale regulation, high functional group density, and lower self-antigenicity. This review delves into the potential of DNA nanostructures as biomolecular scaffolds for antigen display, addressing: (1) immunological mechanisms behind nanovaccines and commonly used nanoparticles in their design, (2) techniques for characterizing protein NP-antigen complexes, (3) advancements in DNA nanotechnology and DNA-protein assembly approach, (4) strategies for precise antigen presentation on DNA scaffolds, and (5) current applications and future possibilities of DNA scaffolds in antigen display. This analysis aims to highlight the transformative potential of DNA nanoscaffolds in immunology and vaccinology. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Assuntos
Nanopartículas , Nanoestruturas , Nanoestruturas/química , DNA/química , Nanotecnologia/métodos , Nanopartículas/química , ProteínasRESUMO
The 2003 severe acute respiratory syndrome coronavirus (SARS-CoV-1) causes more severe disease than SARS-CoV-2, which is responsible for COVID-19. However, our understanding of antibody response to SARS-CoV-1 infection remains incomplete. Herein, we studied the antibody responses in 25 SARS-CoV-1 convalescent patients. Plasma neutralization was higher and lasted longer in SARS-CoV-1 patients than in severe SARS-CoV-2 patients. Among 77 monoclonal antibodies (mAbs) isolated, 60 targeted the receptor-binding domain (RBD) and formed 7 groups (RBD-1 to RBD-7) based on their distinct binding and structural profiles. Notably, RBD-7 antibodies bound to a unique RBD region interfaced with the N-terminal domain of the neighboring protomer (NTD proximal) and were more prevalent in SARS-CoV-1 patients. Broadly neutralizing antibodies for SARS-CoV-1, SARS-CoV-2, and bat and pangolin coronaviruses were also identified. These results provide further insights into the antibody response to SARS-CoV-1 and inform the design of more effective strategies against diverse human and animal coronaviruses.
Assuntos
COVID-19 , Animais , Humanos , Anticorpos Antivirais , Formação de Anticorpos , SARS-CoV-2 , Anticorpos NeutralizantesRESUMO
Influenza A virus subtype H2N2, which caused the 1957 influenza pandemic, remains a global threat. A recent phase I clinical trial investigating a ferritin nanoparticle displaying H2 hemagglutinin in H2-naïve and H2-exposed adults. Therefore, we could perform comprehensive structural and biochemical characterization of immune memory on the breadth and diversity of the polyclonal serum antibody response elicited after H2 vaccination. We temporally map the epitopes targeted by serum antibodies after first and second vaccinations and show previous H2 exposure results in higher responses to the variable head domain of hemagglutinin while initial responses in H2-naïve participants are dominated by antibodies targeting conserved epitopes. We use cryo-EM and monoclonal B cell isolation to describe the molecular details of cross-reactive antibodies targeting conserved epitopes on the hemagglutinin head including the receptor binding site and a new site of vulnerability deemed the medial junction. Our findings accentuate the impact of pre-existing influenza exposure on serum antibody responses.
RESUMO
Viral genomes can be compressed into a near-spherical nanochamber to form infectious particles. In order to mimic the virus morphology and packaging behavior, we invented a programmable icosahedral DNA nanoframe with enhanced rigidity and encapsulated the phiX174 bacteriophage genome. The packaging efficiency could be modulated through specific anchoring strands adjustment, and the trapped phage genome remained accessible for enzymatic operations. Moreover, the packed complex could infect Escherichia coli (E.â coli) cells through bacterial uptake to produce plaques. This rigid icosahedral DNA architecture demonstrated a versatile platform to develop virus mimetic particles for convenient functional nucleic acid entrapment, manipulation and delivery.
Assuntos
Bacteriófagos , Escherichia coli , Escherichia coli/genética , DNA/genética , Bacteriófagos/genética , DNA Viral/genéticaRESUMO
DNA hydrogels have attracted increasing attention owing to their excellent permeability and high mechanical strength, together with thixotropy, versatile programmability and good biocompatibility. However, the moderate biostability and immune stimulation of DNA have arisen as big concerns for future potential clinical applications. Herein, we report the self-assembly of a novel l-DNA hydrogel, which inherited the extraordinary physical properties of a d-DNA hydrogel. With the mirror-isomer deoxyribose, this hydrogel exhibited improved biostability, withstanding fetal bovine serum (FBS) for at least 1â month without evident decay of its mechanical properties. The low inflammatory response of the l-DNA hydrogel has been verified both in vitro and in vivo. Hence, this l-DNA hydrogel with outstanding biostability and biocompatibility can be anticipated to serve as an ideal 3D cell-culture matrix and implanted bio-scaffold for long-term biomedical applications.
Assuntos
DNA , HidrogéisRESUMO
Engineered ectodomain trimer immunogens based on BG505 envelope glycoprotein are widely utilized as components of HIV vaccine development platforms. In this study, we used rhesus macaques to evaluate the immunogenicity of several stabilized BG505 SOSIP constructs both as free trimers and presented on a nanoparticle. We applied a cryoEM-based method for high-resolution mapping of polyclonal antibody responses elicited in immunized animals (cryoEMPEM). Mutational analysis coupled with neutralization assays were used to probe the neutralization potential at each epitope. We demonstrate that cryoEMPEM data can be used for rapid, high-resolution analysis of polyclonal antibody responses without the need for monoclonal antibody isolation. This approach allowed to resolve structurally distinct classes of antibodies that bind overlapping sites. In addition to comprehensive mapping of commonly targeted neutralizing and non-neutralizing epitopes in BG505 SOSIP immunogens, our analysis revealed that epitopes comprising engineered stabilizing mutations and of partially occupied glycosylation sites can be immunogenic.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Microscopia Crioeletrônica/métodos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicosilação , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/ultraestrutura , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , HIV-1/genética , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Macaca mulatta , Modelos Moleculares , Conformação Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestruturaRESUMO
Influenza viruses remain a major public health threat. Seasonal influenza vaccination in humans primarily stimulates pre-existing memory B cells, which differentiate into a transient wave of circulating antibody-secreting plasmablasts1-3. This recall response contributes to 'original antigenic sin'-the selective increase of antibody species elicited by previous exposures to influenza virus antigens4. It remains unclear whether such vaccination can also induce germinal centre reactions in the draining lymph nodes, where diversification and maturation of recruited B cells can occur5. Here we used ultrasound-guided fine needle aspiration to serially sample the draining lymph nodes and investigate the dynamics and specificity of germinal centre B cell responses after influenza vaccination in humans. Germinal centre B cells that bind to influenza vaccine could be detected as early as one week after vaccination. In three out of eight participants, we detected vaccine-binding germinal centre B cells up to nine weeks after vaccination. Between 12% and 88% of the responding germinal centre B cell clones overlapped with B cells detected among early circulating plasmablasts. These shared B cell clones had high frequencies of somatic hypermutation and encoded broadly cross-reactive monoclonal antibodies. By contrast, vaccine-induced B cell clones detected only in the germinal centre compartment exhibited significantly lower frequencies of somatic hypermutation and predominantly encoded strain-specific monoclonal antibodies, which suggests a naive B cell origin. Some of these strain-specific monoclonal antibodies recognized epitopes that were not targeted by the early plasmablast response. Thus, influenza virus vaccination in humans can elicit a germinal centre reaction that recruits B cell clones that can target new epitopes, thereby broadening the spectrum of vaccine-induced protective antibodies.
Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Memória Imunológica/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Adulto , Animais , Células Clonais/imunologia , Mapeamento de Epitopos , Feminino , Centro Germinativo/citologia , Humanos , Masculino , CamundongosRESUMO
Due to constant antigenic drift and shift, current influenza-A vaccines need to be redesigned and administered annually. A universal flu vaccine (UFV) that provides long-lasting protection against both seasonal and emerging pandemic influenza strains is thus urgently needed. The hemagglutinin (HA) stem antigen is a promising target for such a vaccine as it contains neutralizing epitopes, known to induce cross-protective IgG responses against a wide variety of influenza subtypes. In this study, we describe the development of a UFV candidate consisting of a HAstem trimer displayed on the surface of rigid capsid-like particles (CLP). Compared to soluble unconjugated HAstem trimer, the CLP-HAstem particles induced a more potent, long-lasting immune response and were able to protect mice against both homologous and heterologous H1N1 influenza challenge, even after a single dose.
RESUMO
Extensive studies with subtype A BG505-derived HIV envelope glycoprotein (Env) immunogens have revealed that the dominant autologous neutralizing epitope in rabbits is located in an exposed region of the heavily glycosylated trimer that lacks potential N-linked glycosylation sites at positions 230, 241, and 289. The Env derived from B41, a subtype B virus, shares a glycan hole centered on positions 230 and 289. To test whether broader neutralization to the common glycan hole can be achieved, we immunized rabbits with B41 SOSIP (gp120-gp41 disulfide [SOS] with an isoleucine-to-proline mutation [IP] in gp41) alone, as well as B41 and BG505 coimmunization. We isolated autologous neutralizing antibodies (nAbs) and described their structure in complex with the B41 Env. Our data suggest that distinct autologous nAb lineages are induced by BG505 and B41 immunogens, even when both were administered together. In contrast to previously described BG505 glycan hole antibodies, the B41-specific nAbs accommodate the >97% conserved N241 glycan, which is present in B41. Single-particle cryo-electron microscopy studies confirmed that B41- and BG505-specific nAbs bind to overlapping glycan hole epitopes. We then used our high-resolution data to guide mutations in the BG505 glycan hole epitope in an attempt to broaden the reactivity of a B41-specific nAb, but we recovered only partial binding. Our data demonstrate that the lack of cross-reactivity in glycan hole antibodies is due to amino acid differences within the epitope, and our attempts to rationally design cross-reactive trimers resulted in only limited success. Thus, even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult.IMPORTANCE A glycan hole is one of the most dominant autologous neutralizing epitopes targeted on BG505 and B41 SOSIP trimer-immunized rabbits. Our high-resolution cryo-electron microscopy (cryoEM) studies of B41 in complex with a B41-specific antibody complex elucidate the molecular basis of this strain-specific glycan hole response. We conclude that even for the immunodominant glycan hole shared between BG505 and B41, the prospect of designing prime-boost immunogens remains difficult.
Assuntos
Anticorpos Neutralizantes/química , Anticorpos Anti-HIV/química , HIV-1/química , Polissacarídeos/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Animais , Microscopia Crioeletrônica , Glicosilação , Células HEK293 , Humanos , Epitopos Imunodominantes/genética , Interferometria , Testes de Neutralização , Conformação Proteica , Coelhos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genéticaRESUMO
Despite recent progress in engineering native trimeric HIV-1 envelope glycoprotein (Env) mimics as vaccine candidates, Env trimers often induce vaccine-matched neutralizing antibody (NAb) responses. Understanding the specificities of autologous NAb responses and the underlying molecular mechanisms restricting the neutralization breadth is therefore informative to improve vaccine efficacy. Here, we delineate the response specificity by single B cell sorting and serum analysis of guinea pigs immunized with BG505 SOSIP.664 Env trimers. Our results reveal a prominent immune target containing both conserved and strain-specific residues in the C3/V4 region of Env in trimer-vaccinated animals. The defined NAb response shares a high degree of similarity with the early NAb response developed by a naturally infected infant from whom the HIV virus strain BG505 was isolated and later developed a broadly NAb response. Our study describes strain-specific responses and their possible evolution pathways, thereby highlighting the potential to broaden NAb responses by immunogen re-design.
Assuntos
Epitopos/imunologia , Glicoproteínas/metabolismo , HIV-1/imunologia , Imunização/métodos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Cobaias , HumanosRESUMO
In living cells, compartmentalized or membrane-associated enzymes are often assembled into large networks to cooperatively catalyze cascade reaction pathways essential for cellular metabolism. Here, we report the assembly of an artificial 2D enzyme network of two cascade enzymes-glucose-6-phosphate dehydrogenase (G6PDH) and lactate dehydrogenase (LDH)-on a wireframe DNA origami template. Swinging arms were used to facilitate the transport of the redox intermediate of NAD+ /NADH between enzyme pairs on the array. The assemblies of 2D enzyme networks were characterized by gel electrophoresis and visualized by atomic force microscopy (AFM). The spatial arrangements of multiple enzyme pairs were optimized to facilitate efficient substrate channeling by exploiting the programmability of DNA origami to manipulate the key parameters of swinging arm length and stoichiometry. Compared with a single enzyme pair, the 2D organized enzyme systems exhibited higher reaction efficiency due to the promoted transfer of intermediates within the network.
Assuntos
Redes Reguladoras de Genes , Glucosefosfato Desidrogenase/genética , L-Lactato Desidrogenase/genética , Biocatálise , DNA/química , DNA/metabolismo , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Microscopia de Força Atômica , Estrutura Molecular , Especificidade por Substrato , Propriedades de SuperfícieRESUMO
This Review focuses on how to use DNA nanostructures as scaffolds to organize biological molecules. First, we introduce the use of structural DNA nanotechnology to engineer rationally designed nanostructures. Second, we survey approaches used to generate protein-DNA conjugates. Third, we discuss studies exploring DNA scaffolds to create DNA nanodevices to analyze protein structures, to engineer enzyme pathways, to create artificial light-harvesting systems, and to generate nanomachines in vitro and in vivo. Future challenges and perspectives of using DNA nanostructures as programmable biomolecular scaffolds are addressed at the end.