Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Death Differ ; 27(5): 1709-1727, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31728016

RESUMO

Circular RNAs (circRNAs) are novel RNA molecules that play important roles in chemoresistance in different cancers, including breast and gastric cancers. However, whether circRNAs are involved in the response to chemotherapy in small cell lung cancer (SCLC) remains largely unknown. In this study, we observed that cESRP1 (circular RNA epithelial splicing regulatory protein-1) expression was significantly downregulated in the chemoresistant cells compared with the parental chemosensitive cells. cESRP1 enhanced drug sensitivity by repressing miR-93-5p in SCLC. Cytoplasmic cESRP1 could directly bind to miR-93-5p and inhibit the posttranscriptional repression mediated by miR-93-5p, thereby upregulating the expression of the miR-93-5p downstream targets Smad7/p21(CDKN1A) and forming a negative feedback loop to regulate transforming growth factor-ß (TGF-ß) mediated epithelial-mesenchymal transition. Furthermore, cESRP1 overexpression and TGF-ß pathway inhibition both altered tumour responsiveness to chemotherapy in an acquired chemoresistant patient-derived xenograft model. Importantly, cESRP1 expression was downregulated in SCLC patient tissues and was associated with survival. Our findings reveal, for the first time, that cESRP1 plays crucial a role in SCLC chemosensitivity by sponging miR-93-5p to inhibit the TGF-ß pathway, suggesting that cESRP1 may serve as a valuable prognostic biomarker and a potential therapeutic target in SCLC patients.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , RNA Circular/metabolismo , Transdução de Sinais , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Sequência de Bases , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , RNA Circular/genética , Proteína Smad7/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
BMC Med Genomics ; 12(1): 67, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118037

RESUMO

BACKGROUND: Chemoresistance is a primary clinical challenge for the management of small cell lung cancer. Additionally, transcriptional regulation by super enhancer (SE) has an important role in tumor evolution. The functions of SEs, a key class of noncoding DNA cis-regulatory elements, have been the subject of many recent studies in the field of cancer research. METHODS: In this study, using chromatin immunoprecipitation-sequencing and RNA-sequencing (RNA-seq), we aimed to identify SEs associated with chemoresistance from H69AR cells. Through integrated bioinformatics analysis of the MEME chip, we predicted the master transcriptional factors (TFs) binding to SE sites and verified the relationships between TFs of SEs and drug resistance by RNA interference, cell counting kit 8 assays, quantitative real-time reverse transcription polymerase chain reaction. RESULTS: In total, 108 SEs were screened from H69AR cells. When combining this analysis with RNA-seq data, 45 SEs were suggested to be closely related to drug resistance. Then, 12 master TFs were predicted to localize to regions of those SEs. Subsequently, we selected forkhead box P1 (FOXP1), interferon regulatory factor 1 (IRF1), and specificity protein 1 (SP1) to authenticate the functional relationships of master TFs with chemoresistance via SEs. CONCLUSIONS: We screened out SEs involved with drug resistance and evaluated the functions of FOXP1, IRF1, and SP1 in chemoresistance. Our findings established a large group of SEs associated with drug resistance in small cell lung cancer, revealed the drug resistance mechanisms of SEs, and provided insights into the clinical applications of SEs.


Assuntos
Biologia Computacional , Resistencia a Medicamentos Antineoplásicos/genética , Elementos Facilitadores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares/genética , Análise de Sequência de RNA , Carcinoma de Pequenas Células do Pulmão/genética , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Fatores de Transcrição/metabolismo
3.
Cell Cycle ; 18(1): 69-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30569799

RESUMO

Prostate cancer-associated ncRNA transcript 6 (PCAT6) is a long intergenic noncoding RNA that is involved in the progression of prostate and lung cancer, acting as a potential diagnostic and prognostic biomarker in nonsmall cell lung cancer. However, little is known about PCAT6 expression and its clinical significance in colon cancer. Here, we aimed to investigate the clinical significance of PCAT6 in colon cancer and its underlying mechanism. The expression of PCAT6 was analyzed in colon cancer tissues using public databases, and a series of in vitro and in vivo experiments was performed to investigate the biological functions of PCAT6 in colon cancer cells and the underlying mechanisms. Our results demonstrated that PCAT6 was upregulated in colon cancer tissues compared with that in noncancerous tissues, correlating with poorer clinical stages and a worse survival status. In vitro and in vivo experiments illustrated PCAT6 promoted cell growth and inhibited cell apoptosis in colon cancer. Mechanistically, PCAT6 enhanced the coenrichment of EZH2 and H3K4me3 at the apoptosis repressor with caspase recruitment domain (ARC) genomic region, promoting the transcriptional activity of ARC. Our data highlighted that PCAT6 acts as a key activator of ARC expression by forming a complex with EZH2, inhibiting cell apoptosis and contributing to colon cancer progression. These findings elucidated that PCAT6 may be a novel prognostic predictor and therapeutic target of colon cancer.


Assuntos
Neoplasias do Colo/genética , Proteínas do Citoesqueleto/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteínas do Tecido Nervoso/genética , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Movimento Celular , Proliferação de Células/genética , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Xenoenxertos , Humanos , Camundongos , Prognóstico
4.
Cancer Manag Res ; 10: 4735-4745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425570

RESUMO

OBJECTIVE: microRNAs are regulatory molecules regarded as important in the pathogenesis of different types of tumors. microRNA-216a (miR-216a-5p) has been identified as a tumor suppressor in multiple malignancies. However, the role of miR-216a-5p in the pathogenesis of small cell lung cancer (SCLC) remains obscure. The objective of this study was to investigate the role of the miR-216a-5p/Bcl-2 axis in SCLC pathogenesis. MATERIALS AND METHODS: All the experimental methods used were as follows: microarray analysis, cell culture, transient, and stable gene transfection; real-time fluorescence PCR; Western blot; flow cytometry for cell cycle analysis; in vitro proliferation assay; in vitro wound healing experiment; in vivo xenograft model in nude mice; and dual luciferase reporter assay. All statistical analyses were carried out using GraphPad Prism 7 software. Statistical significance was analyzed by Student's t-test or one-way ANOVA. P <0.05 (typically compared with the negative control group) was considered as significant and is marked with an asterisk in the figures. RESULTS: In this study, we observed that miR-216a-5p is downregulated in SCLC cell lines compared to that in the normal human bronchial epithelial cell line 16-HBE. In vitro and in vivo experiments demonstrate that upregulation of miR-216a-5p significantly decreased cell growth and migration and its downregulation increased SCLC cell proliferation and migration and influenced the cell cycle. Using bioinformatics analyses, we predicted that the important antiapoptotic gene Bcl-2 is targeted by miR-216a-5p, and we identified a functional miR-216a-5p binding site in the 3'-UTR of Bcl-2 using luciferase reporter assay. Furthermore, we determined that suppression of miR-216a-5p modulated the expression of Bcl-2, Bax, and Bad proteins (Bcl-2 family proteins), while Bcl-2 knockdown abrogated the effect of miR-216a-5p downregulation on cell proliferation, cell migration, and the cell cycle. CONCLUSION: Taken together, these findings suggest that miR-216a-5p regulates SCLC biology via Bcl-2 family proteins. Therefore, our study highlights the role of the miR-216a-5p/Bcl-2 axis in SCLC pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA