Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Curr Biol ; 34(4): 868-880.e6, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38366595

RESUMO

The flavor profile of tea is influenced not only by different tea varieties but also by the surrounding soil environment. Recent studies have indicated the regulatory role of soil microbes residing in plant roots in nutrient uptake and metabolism. However, the impact of this regulatory mechanism on tea quality remains unclear. In this study, we showed that a consortium of microbes isolated from tea roots enhanced ammonia uptake and facilitated the synthesis of theanine, a key determinant of tea taste. Variations were observed in the composition of microbial populations colonizing tea roots and the rhizosphere across different seasons and tea varieties. By comparing the root microorganisms of the high-theanine tea variety Rougui with the low-theanine variety Maoxie, we identified a specific group of microbes that potentially modulate nitrogen metabolism, subsequently influencing the theanine levels in tea. Furthermore, we constructed a synthetic microbial community (SynCom) mirroring the microbe population composition found in Rougui roots. Remarkably, applying SynCom resulted in a significant increase in the theanine content of tea plants and imparted greater tolerance to nitrogen deficiency in Arabidopsis. Our study provides compelling evidence supporting the use of root microorganisms as functional microbial fertilizers to enhance tea quality.


Assuntos
Camellia sinensis , Glutamatos , Microbiota , Nitrogênio/metabolismo , Camellia sinensis/metabolismo , Solo , Homeostase , Chá/metabolismo
2.
Plant Physiol ; 195(1): 356-369, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227494

RESUMO

Actin dynamics are critical for plant cell morphogenesis, but the underlying signaling mechanisms regulating these dynamics are not well understood. Here, we established that PLEIOTROPIC REGULATORY LOCUS1 (PRL1) modulates leaf pavement cell (PC) morphogenesis in Arabidopsis (Arabidopsis thaliana) by maintaining the dynamic homeostasis of actin microfilaments (MF). Our previous studies indicated that PC shape was determined by antagonistic RHO-RELATED GTPase FROM PLANTS 2 (ROP2) and RHO-RELATED GTPase FROM PLANTS 6 (ROP6) signaling pathways that promote cortical MF and microtubule organization, respectively. Our genetic screen for additional components in ROP6-mediated signaling identified prl1 alleles. Genetic analysis confirmed that PRL1 plays a key role in PC morphogenesis. Mutations in PRL1 caused cortical MF depolymerization, resulting in defective PC morphogenesis. Further genetic analysis revealed that PRL1 is epistatic to ROP2 and ROP6 in PC morphogenesis. Mutations in PRL1 enhanced the effects of ROP2 and ROP6 in PC morphogenesis, leading to a synergistic phenotype in the PCs of ROP2 prl1 and ROP6 prl1. Furthermore, the activities of ROP2 and ROP6 were differentially altered in prl1 mutants, suggesting that ROP2 and ROP6 function downstream of PRL1. Additionally, cortical MF depolymerization in prl1 mutants occurred independently of ROP2 and ROP6, implying that these proteins impact PC morphogenesis in the prl1 mutant through other cellular processes. Our research indicates that PRL1 preserves the structural integrity of actin and facilitates pavement cell morphogenesis in Arabidopsis.


Assuntos
Citoesqueleto de Actina , Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP , Morfogênese , Mutação , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Morfogênese/genética , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Transdução de Sinais
3.
Curr Biol ; 34(4): 769-780.e5, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272030

RESUMO

The remarkable diversity of leaf forms allows plants to adapt to their living environment. In general, leaf diversity is shaped by leaf complexity (compound or simple) and leaf margin pattern (entire, serrated, or lobed). Prior studies in multiple species have uncovered a conserved module of CUC2-auxin that regulates both leaf complexity and margin serration. How this module is regulated in different species to contribute to the species-specific leaf form is unclear. Furthermore, the mechanistic connection between leaf complexity and leaf serration regulation is not well studied. Strawberry has trifoliate compound leaves with serrations at the margin. In the wild strawberry Fragaria vesca, a mutant named salad was isolated that showed deeper leaf serrations but normal leaf complexity. SALAD encodes a single-Myb domain protein and is expressed at the leaf margin. Genetic analysis showed that cuc2a is epistatic to salad, indicating that SALAD normally limits leaf serration depth by repressing CUC2a expression. When both Arabidopsis homologs of SALAD were knocked out, deeper serrations were observed in Arabidopsis rosette leaves, supporting a conserved function of SALAD in leaf serration regulation. We incorporated the analysis of a third strawberry mutant simple leaf 1 (sl1) with reduced leaf complexity but normal leaf serration. We showed that SL1 and SALAD independently regulate CUC2a at different stages of leaf development to, respectively, regulate leaf complexity and leaf serration. Our results provide a clear and simple mechanism of how leaf complexity and leaf serration are coordinately as well as independently regulated to achieve diverse leaf forms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fragaria , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fragaria/genética , Fragaria/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta
4.
Opt Express ; 31(25): 41669-41683, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087560

RESUMO

We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field. The parametrical driving of the photonic field breaks the system's U(1) symmetry down to a Z2 symmetry, whose spontaneous breaking initiates a superradiant phase transition. We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point. The critical behaviors near the superradiant phase transition are characterized by the quantum metric, defined in terms of the response of the quantum state to variation of the control parameter. In addition, a quantum metrological protocol based on the critical behaviors of the quantum metric near the superradiant phase transition is proposed, which enables greatly the achievable measurement precision.

5.
Cell ; 186(25): 5457-5471.e17, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37979582

RESUMO

Extracellular perception of auxin, an essential phytohormone in plants, has been debated for decades. Auxin-binding protein 1 (ABP1) physically interacts with quintessential transmembrane kinases (TMKs) and was proposed to act as an extracellular auxin receptor, but its role was disputed because abp1 knockout mutants lack obvious morphological phenotypes. Here, we identified two new auxin-binding proteins, ABL1 and ABL2, that are localized to the apoplast and directly interact with the extracellular domain of TMKs in an auxin-dependent manner. Furthermore, functionally redundant ABL1 and ABL2 genetically interact with TMKs and exhibit functions that overlap with those of ABP1 as well as being independent of ABP1. Importantly, the extracellular domain of TMK1 itself binds auxin and synergizes with either ABP1 or ABL1 in auxin binding. Thus, our findings discovered auxin receptors ABL1 and ABL2 having functions overlapping with but distinct from ABP1 and acting together with TMKs as co-receptors for extracellular auxin.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Phys Rev Lett ; 131(11): 113601, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774281

RESUMO

Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the quantum level, and play a central role in criticality-enhanced quantum sensing. So far, SPTs have been observed in driven-dissipative systems, but the emergent light fields did not show any nonclassical characteristic due to the presence of strong dissipation. Here we report an experimental demonstration of the SPT featuring the emergence of a highly nonclassical photonic field, realized with a resonator coupled to a superconducting qubit, implementing the quantum Rabi model. We fully characterize the light-matter state by Wigner matrix tomography. The measured matrix elements exhibit quantum interference intrinsic of a photonic mesoscopic superposition, and reveal light-matter entanglement.

7.
J Sci Food Agric ; 103(15): 7455-7468, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37403783

RESUMO

BACKGROUND: Aroma is an important agronomic trait for strawberries, and the improvement of fruit flavor is a key goal in current strawberry breeding programs. Fragaria vesca (also known as woodland strawberry) has become an excellent model plant with exquisite flavor, a small genome size and a short life cycle. Thus, the comprehensive identification of fruit volatiles and their accumulation pattern of F. vesca strawberries are very important and necessary to the fruit aroma study. This study examined the volatile profile changes from the fruits of three F. vesca genotypes during maturation using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry with multivariate analysis. RESULTS: A total of 191 putative volatile compounds were identified, while 152, 159 and 175 volatiles were detected in 20-30 DAP (days after pollination) fruits of Hawaii 4 (HW), Reugen (RG) and Yellow Wonder (YW), respectively. Aldehydes and alcohols predominated in the early time point while esters were predominant during the late time point. Ketones were the dominant compounds from F. vesca strawberries at the ripe stage. Certain genotype-characteristic volatiles were identified, including eugenol, γ-octalactone and δ-decalactone only detected in YW, and mesifurane was found in HW. CONCLUSIONS: RG and YW showed very similar volatile compositions, but YW presented a greater number of volatiles and RG yielded a higher content. Differences in the volatile composition may be primarily due to genetic relationships. The metabolic changes that occurred during fruit ripening and characteristic volatiles will be a useful reference for future studies of strawberry volatiles. © 2023 Society of Chemical Industry.


Assuntos
Fragaria , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Fragaria/química , Microextração em Fase Sólida , Frutas/química , Melhoramento Vegetal , Odorantes/análise , Compostos Orgânicos Voláteis/química
8.
Plant Physiol ; 193(1): 83-97, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37194569

RESUMO

Cell polarity is intimately linked to numerous biological processes, such as oriented plant cell division, particular asymmetric division, cell differentiation, cell and tissue morphogenesis, and transport of hormones and nutrients. Cell polarity is typically initiated by a polarizing cue that regulates the spatiotemporal dynamic of polarity molecules, leading to the establishment and maintenance of polar domains at the plasma membrane. Despite considerable progress in identifying key polarity regulators in plants, the molecular and cellular mechanisms underlying cell polarity formation have yet to be fully elucidated. Recent work suggests a critical role for membrane protein/lipid nanodomains in polarized morphogenesis in plants. One outstanding question is how the spatiotemporal dynamics of signaling nanodomains are controlled to achieve robust cell polarization. In this review, we first summarize the current state of knowledge on potential regulatory mechanisms of nanodomain dynamics, with a special focus on Rho-like GTPases from plants. We then discuss the pavement cell system as an example of how cells may integrate multiple signals and nanodomain-involved feedback mechanisms to achieve robust polarity. A mechanistic understanding of nanodomains' roles in plant cell polarity is still in the early stages and will remain an exciting area for future investigations.


Assuntos
Plantas , Transdução de Sinais , Transdução de Sinais/fisiologia , Plantas/metabolismo , Membrana Celular/metabolismo , Membranas , Morfogênese , Polaridade Celular
9.
Nature ; 616(7955): 56-60, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36949191

RESUMO

Quantum error correction (QEC) aims to protect logical qubits from noises by using the redundancy of a large Hilbert space, which allows errors to be detected and corrected in real time1. In most QEC codes2-8, a logical qubit is encoded in some discrete variables, for example photon numbers, so that the encoded quantum information can be unambiguously extracted after processing. Over the past decade, repetitive QEC has been demonstrated with various discrete-variable-encoded scenarios9-17. However, extending the lifetimes of thus-encoded logical qubits beyond the best available physical qubit still remains elusive, which represents a break-even point for judging the practical usefulness of QEC. Here we demonstrate a QEC procedure in a circuit quantum electrodynamics architecture18, where the logical qubit is binomially encoded in photon-number states of a microwave cavity8, dispersively coupled to an auxiliary superconducting qubit. By applying a pulse featuring a tailored frequency comb to the auxiliary qubit, we can repetitively extract the error syndrome with high fidelity and perform error correction with feedback control accordingly, thereby exceeding the break-even point by about 16% lifetime enhancement. Our work illustrates the potential of hardware-efficient discrete-variable encodings for fault-tolerant quantum computation19.

10.
NPJ Sci Food ; 7(1): 7, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928372

RESUMO

The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.

11.
Dev Cell ; 58(4): 278-288.e5, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36801006

RESUMO

Hair-like structures are shared by most living organisms. The hairs on plant surfaces, commonly referred to as trichomes, form diverse types to sense and protect against various stresses. However, it is unclear how trichomes differentiate into highly variable forms. Here, we show that a homeodomain leucine zipper (HD-ZIP) transcription factor named Woolly controls the fates of distinct trichomes in tomato via a dosage-dependent mechanism. The autocatalytic reinforcement of Woolly is counteracted by an autoregulatory negative feedback loop, creating a circuit with a high or low Woolly level. This biases the transcriptional activation of separate antagonistic cascades that lead to different trichome types. Our results identify the developmental switch of trichome formation and provide mechanistic insights into the progressive fate specification in plants, as well as a path to enhancing plant stress resistance and the production of beneficial chemicals.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/genética , Tricomas/metabolismo , Solanum lycopersicum/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
New Phytol ; 237(4): 1115-1121, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336825

RESUMO

Auxin phytohormone has a role in most aspects of the life of a land plant and is found even in ancient plants such as single-cell green algae. Auxin's ubiquitous but specific effects have been mainly explained by the extraordinary ability of plants to interpret spatiotemporal patterns of auxin concentrations via the regulation of gene transcription. This is thought to be achieved through the combinatorial effects of two families of nuclear coreceptor proteins, that is the TRANSPORT INHIBITOR RESPONSE1 and AUXIN-SIGNALING F-BOX (TIR1/AFB) and AUXIN/INDOLE ACETIC ACID. Recent evidence has suggested transcription-independent roles of TIR1/AFBs localized outside the nucleus and TRANSMEMBRANE KINASE (TMK)-based auxin signaling occurring in the plasma membrane. Furthermore, emerging evidence supports a coordinated action of the intra- and extranuclear auxin signaling pathways to regulate specific auxin responses. Here, we highlight how auxin signaling acts inside and outside the nucleus for the regulation of growth and morphogenesis and propose that the future direction of auxin biology lies in the elucidation of a new collaborative paradigm of intra- and extranuclear auxin signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas F-Box/genética , Receptores de Superfície Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Opt Express ; 31(26): 42976-42994, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178402

RESUMO

We propose a protocol for the generation of NOON states of resonator modes. The physical model is composed of two Kerr-nonlinear resonators and a four-level qudit. Using the off-resonant couplings between the resonators and the qudit, qudit-level-dependent frequency shifts on the two resonators are induced. The frequency shifts allow us to drive different resonators to the N-photon state when the qudit is in different intermediate levels. Consequently, the generation of NOON states with arbitrary photon number N can be completed in only three steps, i.e., driving the qudit to a superposition state of the two intermediate levels, driving one of the resonators to its N-photon state, and driving the qudit back to its ground level. Numerical simulations show that, in the regime of strong Kerr nonlinearity and coupling strengths, the protocol can produce the NOON state with high fidelity in the cases of different photon numbers. In addition, it is possible for the protocol to produce acceptable fidelity in the presence of systematic errors and decoherence factors. Therefore, the protocol may provide some useful perspectives for effective generation of photonic NOON states.

14.
Phys Rev Lett ; 131(26): 260201, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215365

RESUMO

Non-Hermitian (NH) extension of quantum-mechanical Hamiltonians represents one of the most significant advancements in physics. During the past two decades, numerous captivating NH phenomena have been revealed and demonstrated, but all of which can appear in both quantum and classical systems. This leads to the fundamental question: what NH signature presents a radical departure from classical physics? The solution of this problem is indispensable for exploring genuine NH quantum mechanics, but remains experimentally untouched so far. Here, we resolve this basic issue by unveiling distinct exceptional entanglement phenomena, exemplified by an entanglement transition, occurring at the exceptional point of NH interacting quantum systems. We illustrate and demonstrate such purely quantum-mechanical NH effects with a naturally dissipative light-matter system, engineered in a circuit quantum electrodynamics architecture. Our results lay the foundation for studies of genuinely quantum-mechanical NH physics, signified by exceptional-point-enabled entanglement behaviors.

15.
Proc Natl Acad Sci U S A ; 119(41): e2208415119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191209

RESUMO

MicroRNAs (miRNAs) play an essential role in plant growth and development, and as such, their biogenesis is fine-tuned via regulation of the core microprocessor components. Here, we report that Arabidopsis AAR2, a homolog of a U5 snRNP assembly factor in yeast and humans, not only acts in splicing but also promotes miRNA biogenesis. AAR2 interacts with the microprocessor component hyponastic leaves 1 (HYL1) in the cytoplasm, nucleus, and dicing bodies. In aar2 mutants, abundance of nonphosphorylated HYL1, the active form of HYL1, and the number of HYL1-labeled dicing bodies are reduced. Primary miRNA (pri-miRNA) accumulation is compromised despite normal promoter activities of MIR genes in aar2 mutants. RNA decay assays show that the aar2-1 mutation leads to faster degradation of pri-miRNAs in a HYL1-dependent manner, which reveals a previously unknown and negative role of HYL1 in miRNA biogenesis. Taken together, our findings reveal a dual role of AAR2 in miRNA biogenesis and pre-messenger RNA splicing.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Eucariotos/genética , Regulação da Expressão Gênica de Plantas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , Fatores de Processamento de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética
16.
Front Plant Sci ; 13: 847671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693156

RESUMO

Polar cell growth is a process that couples the establishment of cell polarity with growth and is extremely important in the growth, development, and reproduction of eukaryotic organisms, such as pollen tube growth during plant fertilization and neuronal axon growth in animals. Pollen tube growth requires dynamic but polarized distribution and activation of a signaling protein named ROP1 to the plasma membrane via three processes: positive feedback and negative feedback regulation of ROP1 activation and its lateral diffusion along the plasma membrane. In this paper, we introduce a mechanistic integro-differential equation (IDE) along with constrained semiparametric regression to quantitatively describe the interplay among these three processes that lead to the polar distribution of active ROP1 at a steady state. Moreover, we introduce a population variability by a constrained nonlinear mixed model. Our analysis of ROP1 activity distributions from multiple pollen tubes revealed that the equilibrium between the positive and negative feedbacks for pollen tubes with similar shapes are remarkably stable, permitting us to infer an inherent quantitative relationship between the positive and negative feedback loops that defines the tip growth of pollen tubes and the polarity of tip growth.

17.
Curr Biol ; 32(12): R564-R566, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35728526

RESUMO

Cell wall signaling impacts plant growth and development, but how wall signals are perceived and transduced remains enigmatic. A new study shows that a rice wall-associated kinase, OsWAK11, senses pectin and alters growth by binding the OsBRI1 receptor. OsWAK11 inhibits OsBRI1 to slow growth and is degraded to speed up growth upon sensing pectin.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Parede Celular/metabolismo , Oryza/metabolismo , Pectinas/metabolismo , Desenvolvimento Vegetal , Transdução de Sinais
18.
Plant Physiol ; 188(4): 2253-2271, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35218352

RESUMO

As a universal second messenger, calcium (Ca2+) transmits specific cellular signals via a spatiotemporal signature generated from its extracellular source and internal stores. Our knowledge of the mechanisms underlying the generation of a Ca2+ signature is hampered by limited tools for simultaneously monitoring dynamic Ca2+ levels in multiple subcellular compartments. To overcome the limitation and to further improve spatiotemporal resolutions, we have assembled a molecular toolset (CamelliA lines) in Arabidopsis (Arabidopsis thaliana) that enables simultaneous and high-resolution monitoring of Ca2+ dynamics in multiple subcellular compartments through imaging different single-colored genetically encoded calcium indicators. We uncovered several Ca2+ signatures in three types of Arabidopsis cells in response to internal and external cues, including rapid oscillations of cytosolic Ca2+ and apical plasma membrane Ca2+ influx in fast-growing Arabidopsis pollen tubes, the spatiotemporal relationship of Ca2+ dynamics in four subcellular compartments of root epidermal cells challenged with salt, and a shockwave-like Ca2+ wave propagating in laser-wounded leaf epidermis. These observations serve as a testimony to the wide applicability of the CamelliA lines for elucidating the subcellular sources contributing to the Ca2+ signatures in plants.


Assuntos
Arabidopsis , Camellia , Arabidopsis/genética , Arabidopsis/metabolismo , Cálcio/metabolismo , Camellia/genética , Camellia/metabolismo , Citosol/metabolismo , Tubo Polínico/metabolismo
19.
Elife ; 112022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989334

RESUMO

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID-INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fosfotransferases/genética , Imunidade Vegetal/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
20.
J Hazard Mater ; 421: 126802, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396977

RESUMO

The coexistence of hazardous substances enhances their toxicities to plants, but its mechanism is still unclear due to the unknown cytochemical behavior of hazardous substance in plants. In this study, by using interdisciplinary methods, we observed the cytochemical behavior of coexisting hazardous substances {terbium [Tb(III)], benzo(a)pyrene (BaP) and cadmium [Cd(II)] in environments} in plants and thus identified a new mechanism by which coexisting hazardous substances in environments enhance their toxicities to plants. First, Tb(III) at environmental exposure level (1.70 × 10-10 g/L) breaks the inert rule of clathrin-mediated endocytosis (CME) in leaf cells. Specifically, Tb(III) binds to its receptor [FASCICLIN-like arabinogalactan protein 17 (FLA17)] on the plasma membrane of leaf cells and then docks to an intracellular adaptor protein [adaptor protein 2 (AP2)] to form ternary complex [Tb(III)-FLA17-AP2], which finally initiates CME pathway in leaf cells. Second, coexisting Tb(III), BaP and Cd(II) in environments are simultaneously transported into leaf cells via Tb(III)-initiated CME pathway, leading to the accumulation of them in leaf cells. Finally, these accumulated hazardous substances simultaneously poison plant leaf cells. These results provide theoretical and experimental bases for elucidating the mechanisms of hazardous substances in environments poisoning plants, evaluating their risks, and protecting ecosystems.


Assuntos
Clatrina , Substâncias Perigosas , Ecossistema , Endocitose , Substâncias Perigosas/toxicidade , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA