Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.001
Filtrar
1.
J Neural Eng ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38754410

RESUMO

Upper limb loss can profoundly impact an individual's quality of life, posing challenges to both physical capabilities and emotional well-being. To restore limb function by decoding electromyography (EMG) signals, in this paper, we present a novel deep prototype learning method for accurate and generalizable EMG-based gesture classification. Existing methods suffer from limitations in generalization across subjects due to the diverse nature of individual muscle responses, impeding seamless applicability in broader populations. By leveraging deep prototype learning, we introduce a method that goes beyond direct output prediction. Instead, it matches new EMG inputs to a set of learned prototypes and predicts the corresponding labels. This novel methodology significantly enhances the model's classification performance and generalizability by discriminating subtle differences between gestures, making it more reliable and precise in real-world applications. Our experiments on four Ninapro datasets suggest that our deep prototype learning classifier outperforms state-of-the-art methods in terms of intra-subject and inter-subject classification accuracy in gesture prediction. The results from our experiments validate the effectiveness of the proposed method and pave the way for future advancements in the field of EMG gesture classification for upper limb prosthetics.

2.
J Inflamm Res ; 17: 2775-2785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737112

RESUMO

Objective: To analyze the associations of the gut and circulating microbiota with circulating vitamin D3 (VD3), type I interferon (IFNI), systemic inflammation, and clinical profiles in chronic spontaneous urticaria (CSU) patients. Methods: A total of 36 CSU patients with VD3 insufficiency (VDI; serum 25(OH)VD3 <30 ng/mL) and 36 sex-, age-, and body mass index-matched CSU patients with non-VDI were enrolled. Fecal and serum bacteria were identified through 16S rRNA sequencing, and serum 25(OH)VD3 and inflammation biomarkers were assessed using ELISA kits. IFNI response was determined by measuring the stimulatory activity of serum on IFNI-stimulated response element in HEK293 cells in vitro with luciferase assays. Results: Higher urticarial activity score over 7 days (UAS7), higher frequency of levocetirizine resistance, and more severe proinflammation but weaker IFNI response were observed in VDI than non-VDI patients (all P<0.05). IFNI response was strongly positively associated with serum 25(OH)VD3 level in both groups (P<0.001). Compared to non-VDI patients, abundance of the fecal genera Prevotella 9, Escherichia-Shigella, and Klebsiella was significantly increased, while Bacteroides, Faecalibacterium, and Agathobacter were remarkably reduced in VDI patients (all P<0.05). Burkholderia-Caballeronia-Paraburkholderia (40.95%), Acinetobacter (3.05%), and Aquabacterium (2.37%) were the top three bacteria in sera from VDI patients. Both serum 25(OH)VD3 level and IFNI response were positively associated with fecal Bacteroides in the two groups (P<0.05). In non-VDI patients, there were moderately positive associations between IFNI response and fecal Lachnoclostridium, unclassified_f__Lachnospiraceae, and Phascolarctobacterium and between serum 25(OH)VD3 level and fecal Lachnoclostridium (all P<0.01). Circulating microbiota in VDI patients was closely related only to proinflammation and UAS7 (both P<0.05). Conclusion: Changes in gut but not circulating microbiota composition are associated with serum 25(OH)VD3 insufficiency and impaired IFNI homeostasis, which points to greater disease severity (UAS7) and systemic proinflammation in CSU patients.

3.
Anal Chem ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749062

RESUMO

Solid contact (SC) calcium ion-selective electrodes (Ca2+-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CunS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CunS-50-based Ca2+-ISE (CunS-50/Ca2+-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca2+ in a wide activity linear range of 10-7 to 10-1 M, with a low detection limit of 3.16 × 10-8 M. CunS-50/Ca2+-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 µV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB-) participates in the redox reaction of CunS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CunS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38749785

RESUMO

BACKGROUND AND AIMS: This study aimed to explore potential hub genes and pathways of plaque vulnerability and to investigate possible therapeutic targets for acute coronary syndrome (ACS). METHODS AND RESULTS: Four microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs), weighted gene coexpression networks (WGCNA) and immune cell infiltration analysis (IIA) were used to identify the genes for plaque vulnerability. Then, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, Disease Ontology, Gene Ontology annotation and protein-protein interaction (PPI) network analyses were performed to explore the hub genes. Random forest and artificial neural networks were constructed for validation. Furthermore, the CMap and Herb databases were employed to explore possible therapeutic targets. A total of 168 DEGs with an adjusted P < 0.05 and approximately 1974 IIA genes were identified in GSE62646. Three modules were detected and associated with CAD-Class, including 891 genes that can be found in GSE90074. After removing duplicates, 114 hub genes were used for functional analysis. GO functions identified 157 items, and 6 pathways were enriched for the KEGG pathway at adjusted P < 0.05 (false discovery rate, FDR set at < 0.05). Random forest and artificial neural network models were built based on the GSE48060 and GSE34822 datasets, respectively, to validate the previous hub genes. Five genes (GZMA, GZMB, KLRB1, KLRD1 and TRPM6) were selected, and only two of them (GZMA and GZMB) were screened as therapeutic targets in the CMap and Herb databases. CONCLUSION: We performed a comprehensive analysis and validated GZMA and GZMB as a target for plaque vulnerability, which provides a therapeutic strategy for the prevention of ACS. However, whether it can be used as a predictor in blood samples requires further experimental verification.

5.
Angew Chem Int Ed Engl ; : e202405344, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753429

RESUMO

Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride-derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking via a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated, and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.

6.
Front Endocrinol (Lausanne) ; 15: 1336402, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742197

RESUMO

Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.


Assuntos
Nefropatias Diabéticas , Metabolismo dos Lipídeos , Humanos , Nefropatias Diabéticas/metabolismo , Animais , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/complicações , Microbioma Gastrointestinal
7.
J Nucl Med ; 65(Suppl 1): 46S-53S, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719239

RESUMO

Total-body PET, an emerging technique, enables high-quality simultaneous total-body dynamic PET acquisition and accurate kinetic analysis. It has the potential to facilitate the study of multiple tracers while minimizing radiation dose and improving tracer-specific imaging. This advancement holds promise for enhancing the development and clinical evaluation of drugs, particularly radiopharmaceuticals. Multiple clinical trials are using a total-body PET scanner to explore existing and innovative radiopharmaceuticals. However, challenges persist, along with the opportunities, with regard to the use of total-body PET in drug development and evaluation. Specifically, considerations relate to the role of total-body PET in clinical pharmacologic evaluations and its integration into the theranostic paradigm. In this review, state-of-the-art total-body PET and its potential roles in pharmaceutical research are explored.


Assuntos
Desenvolvimento de Medicamentos , Tomografia por Emissão de Pósitrons , Imagem Corporal Total , Humanos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Animais
8.
J Nucl Med ; 65(Suppl 1): 38S-45S, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719241

RESUMO

Radiopharmaceuticals play a critical role in nuclear medicine, providing novel tools for specifically delivering radioisotopes for the diagnosis and treatment of cancers. As the starting point for developing radiopharmaceuticals, cancer-specific biomarkers are important and receive worldwide attention. This field in China is currently experiencing a rapid expansion, with multiple radiotracers targeting novel targets being developed and translated into clinical studies. This review provides a brief overview of the exploration of novel imaging targets, preclinical evaluation of their targeting ligands, and translational research in China from 2020 to 2023, for detecting cancer, guiding targeted therapy, and visualizing the immune microenvironment. We believe that China will play an even more important role in the development of nuclear medicine in the world in the future.


Assuntos
Biomarcadores Tumorais , Neoplasias , Traçadores Radioativos , Humanos , China , Biomarcadores Tumorais/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Compostos Radiofarmacêuticos , Animais
9.
Medicine (Baltimore) ; 103(19): e38103, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728448

RESUMO

RATIONALE: Thrombotic thrombocytopenic purpura (TTP) is a rare thrombotic microangiopathy caused by reduced activity of the von Willebrand factor-cleaving protease (ADAMTS13), which can be life-threatening. The patient reported in this case study also had concurrent Sjögren syndrome and renal impairment, presenting multiple symptoms and posing a great challenge in treatment. PATIENT CONCERNS: A 25-year-old woman in the postpartum period visited the hospital due to indifference in consciousness for more than 1 day following cesarean section 8 days prior. DIAGNOSIS: Notable decreases were observed in platelets, hemoglobin, creatinine, and ADAMTS13 levels. After a consultative examination by an ophthalmologist, she was diagnosed with retinal hemorrhage in the right eye and dry eye syndrome in both eyes. INTERVENTIONS: Having been diagnosed with TTP with Sjögren syndrome and renal impairment, she received repeated treatments with plasmapheresis combined with rituximab. OUTCOMES: Following treatment and during the follow-up period, the patient's platelet counts and bleeding symptoms significantly improved. LESSONS: TTP has a high mortality rate, and when combined with Sjögren syndrome and renal impairment, it poses an even greater challenge in treatment. However, after administering standard plasmapheresis combined with rituximab treatment, the treatment outcome is favorable.


Assuntos
Plasmaferese , Púrpura Trombocitopênica Trombótica , Rituximab , Síndrome de Sjogren , Humanos , Feminino , Síndrome de Sjogren/complicações , Síndrome de Sjogren/terapia , Plasmaferese/métodos , Adulto , Púrpura Trombocitopênica Trombótica/terapia , Púrpura Trombocitopênica Trombótica/complicações , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Rituximab/uso terapêutico , Rituximab/administração & dosagem , Terapia Combinada , Insuficiência Renal/terapia , Insuficiência Renal/etiologia , Fatores Imunológicos/uso terapêutico , Fatores Imunológicos/administração & dosagem
10.
J Magn Reson Imaging ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703135

RESUMO

BACKGROUND: Hypertension (HTN) and type 2 diabetes mellitus (T2DM) are both associated with left ventricular (LV) and left atrial (LA) structural and functional abnormalities; however, the relationship between the left atrium and ventricle in this population is unclear. PURPOSE: To identify differences between hypertensive patients with and without T2DM as the basis for further investigation the atrioventricular coupling relationship. STUDY TYPE: Cross-sectional, retrospective study. POPULATION: 89 hypertensive patients without T2DM [HTN (T2DM-)] (age: 58.4 +/- 11.9 years, 48 male), 62 hypertensive patients with T2DM [HTN (T2DM+)] (age: 58.5 +/- 9.1 years, 32 male) and 70 matched controls (age: 55.0 +/- 9.6 years, 37 male). FIELD STRENGTH/SEQUENCE: 2D balanced steady-state free precession cine sequence at 3.0 T. ASSESSMENT: LA reservoir, conduit, and booster strain (εs, εe, and εa) and strain rate (SRs, SRe, and SRa), LV radial, circumferential and longitudinal peak strain (PS) and peak systolic strain rate and peak diastolic strain rate (PSSR and PDSR) were derived from LA and LV cine images and compared between groups. STATISTICAL TESTS: Chi-square or Fisher's exact test, one-way analysis of variance, analysis of covariance, Pearson's correlation, multivariable linear regression analysis, and intraclass correlation coefficient. A P value <0.05 was considered significant. RESULTS: Compared with controls, εs, εe, SRe and PS-longitudinal, PDSR-radial, and PDSR-longitudinal were significantly lower in HTN (T2DM-) group, and they were even lower in HTN (T2DM+) group than in both controls and HTN (T2DM-) group. SRs, εa, SRa, as well as PS-radial, PS-circumferential, PSSR-radial, and PSSR-circumferential were significantly lower in HTN (T2DM+) compared with controls. Multivariable regression analyses demonstrated that: T2DM and PS-circumferential and PS-longitudinal (ß = -4.026, -0.486, and -0.670, respectively) were significantly associated with εs; T2DM and PDSR-radial and PDSR-circumferential were significantly associated with εe (ß = -3.406, -3.352, and -6.290, respectively); T2DM and PDSR-radial were significantly associated with SRe (ß = 0.371 and 0.270, respectively); T2DM and PDSR-longitudinal were significantly associated with εa (ß = -1.831 and 5.215, respectively); and PDSR-longitudinal was significantly associated with SRa (ß = 1.07). DATA CONCLUSION: In hypertensive patients, there was severer LA dysfunction in those with coexisting T2DM, which may be associated with more severe LV dysfunction and suggests adverse atrioventricular coupling. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 3.

11.
Chem Biodivers ; : e202400557, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701359

RESUMO

In the present investigation, a series of dimethoxy or methylenedioxy substituted-cinnamamide derivatives containing tertiary amine moiety (N. N-Dimethyl, N, N-diethyl, Pyrrolidine, Piperidine, Morpholine) were synthesized and evaluated for cholinesterase inhibition and blood-brain barrier (BBB) permeability. Although their chemical structures are similar, their biological activities exhibit diversity. The results showed that all compounds except for those containing morpholine group exhibited moderate to potent acetylcholinesterase inhibition. Preliminary screening of BBB permeability shows that methylenedioxy substituted compounds have better brain permeability than the others. Compound 10c, containing methylenedioxy and pyrrolidine side chain, showed a better acetylcholinesterase inhibition (IC50: 1.52±0.19 µmol/L) and good blood-brain barrier permeability. Further pharmacokinetic investigation of compound 10c using ultra high performance liquid chromatography-mass/mass spectrometry (UPLC-MS/MS) in mice showed that compound 10c in brain tissue reached its peak concentration (857.72 ± 93.56 ng/g) after dosing 30 min. Its half-life in the serum is 331 min (5.52 h), and the CBrain/CSerum at various sampling points is ranged from 1.65 to 4.71(Mean: 2.76) within 24 hours. This investigation provides valuable information on the chemistry and pharmacological diversity of cinnamic acid derivatives and may be beneficial for the discovery of central nervous system drugs.

12.
J Ethnopharmacol ; 330: 118264, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38692417

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY: Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS: First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS: ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION: ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.


Assuntos
Apoptose , Combinação de Medicamentos , Medicamentos de Ervas Chinesas , Ferroptose , Insuficiência Cardíaca , Miócitos Cardíacos , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Supressora de Tumor p53 , Animais , Ferroptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ratos , Fosfatidilinositol 3-Quinase/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Modelos Animais de Doenças , Pós
13.
Cell Mol Biol Lett ; 29(1): 68, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730334

RESUMO

BACKGROUND: Members of the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing (NLRP) family regulate various physiological and pathological processes. However, none have been shown to regulate actin cap formation or spindle translocation during the asymmetric division of oocyte meiosis I. NLRP4E has been reported as a candidate protein in female fertility, but its function is unknown. METHODS: Immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR), and western blotting were employed to examine the localization and expression levels of NLRP4E and related proteins in mouse oocytes. small interfering RNA (siRNA) and antibody transfection were used to knock down NLRP4E and other proteins. Immunoprecipitation (IP)-mass spectrometry was used to identify the potential proteins interacting with NLRP4E. Coimmunoprecipitation (Co-IP) was used to verify the protein interactions. Wild type (WT) or mutant NLRP4E messenger RNA (mRNA) was injected into oocytes for rescue experiments. In vitro phosphorylation was employed to examine the activation of steroid receptor coactivator (SRC) by NLRP4E. RESULTS: NLRP4E was more predominant within oocytes compared with other NLRP4 members. NLRP4E knockdown significantly inhibited actin cap formation and spindle translocation toward the cap region, resulting in the failure of polar body extrusion at the end of meiosis I. Mechanistically, GRIN1, and GANO1 activated NLRP4E by phosphorylation at Ser429 and Thr430; p-NLRP4E is translocated and is accumulated in the actin cap region during spindle translocation. Next, we found that p-NLRP4E directly phosphorylated SRC at Tyr418, while p-SRC negatively regulated p-CDC42-S71, an inactive form of CDC42 that promotes actin cap formation and spindle translocation in the GTP-bound form. CONCLUSIONS: NLRP4E activated by GRIN1 and GANO1 regulates actin cap formation and spindle translocation toward the cap region through upregulation of p-SRC-Tyr418 and downregulation of p-CDC42-S71 during meiosis I.


Assuntos
Actinas , Meiose , Oócitos , Proteína cdc42 de Ligação ao GTP , Animais , Oócitos/metabolismo , Camundongos , Feminino , Actinas/metabolismo , Actinas/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Fosforilação , Fuso Acromático/metabolismo
14.
Environ Sci Technol ; 58(20): 8610-8630, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38720447

RESUMO

Solar desalination, a green, low-cost, and sustainable technology, offers a promising way to get clean water from seawater without relying on electricity and complex infrastructures. However, the main challenge faced in solar desalination is salt accumulation, either on the surface of or inside the solar evaporator, which can impair solar-to-vapor efficiency and even lead to the failure of the evaporator itself. While many ideas have been tried to address this ″salt accumulation″, scientists have not had a clear system for understanding what works best for the enhancement of salt-rejecting ability. Therein, for the first time, we classified the state-of-the-art salt-rejecting designs into isolation strategy (isolating the solar evaporator from brine), dilution strategy (diluting the concentrated brine), and crystallization strategy (regulating the crystallization site into a tiny area). Through the specific equations presented, we have identified key parameters for each strategy and highlighted the corresponding improvements in the solar desalination performance. This Review provides a semiquantitative perspective on salt-rejecting designs and critical parameters for enhancing the salt-rejecting ability of dilution-based, isolation-based, and crystallization-based solar evaporators. Ultimately, this knowledge can help us create reliable solar desalination solutions to provide clean water from even the saltiest sources.


Assuntos
Água do Mar , Purificação da Água , Purificação da Água/métodos , Água do Mar/química , Luz Solar , Salinidade , Sais/química , Cloreto de Sódio/química
15.
EJNMMI Radiopharm Chem ; 9(1): 42, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753262

RESUMO

BACKGROUND: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY: This selection of highlights provides commentary on 24 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION: Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.

16.
Nat Commun ; 15(1): 4066, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744885

RESUMO

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Assuntos
Archaea , Genoma Arqueal , Fontes Termais , Metagenoma , Metagenômica , Filogenia , Fontes Termais/microbiologia , Archaea/genética , Archaea/classificação , China , Metagenômica/métodos , Biodiversidade , Concentração de Íons de Hidrogênio , Enxofre/metabolismo , Temperatura , Ecossistema
17.
Nature ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778111

RESUMO

Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted ß- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.

18.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38767261

RESUMO

Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the ß phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer ß-P, ß-As, and ß-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for ß-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124382, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701579

RESUMO

MXene sheets with the unique electrical and optical properties show the excellent potential for surface-enhanced Raman spectroscopy (SERS) applications. In this study, we chose Ti3C2Tx, a type of MXene, to decorate silver nanoparticles (Ag NPs) on the ultrathin two-dimensional (2D) MXene sheets. The designed Ag-MXene substrates with SERS activity showed high sensitivity, high stability, and reproducibility. The SERS signal was enhanced by the synergistic contribution of both charge-transfer (CT) and surface plasmon resonance (SPR) involving the Ag NPs and the MXene sheets. Due to the strong interaction between the probe molecules and Ag NPs which provided the nanoscale gap, the substrate exhibited remarkable SERS performance. A novel experimental strategy was developed to facilitate the controlled synthesis of noble metal NPs and MXene sheets and provide insights for further improving the practical applications of these materials in SERS detection.

20.
Eye Contact Lens ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695745

RESUMO

OBJECTIVES: To explore the potential of artificial intelligence (AI) to assist prescription determination for orthokeratology (OK) lenses. METHODS: Artificial intelligence algorithm development followed by a real-world trial. A total of 11,502 OK lenses fitting records collected from seven clinical environments covering major brands. Records were randomly divided in a three-way data split. Cross-validation was used to identify the most accurate algorithm, followed by an evaluation using an independent test data set. An online AI-assisted system was implemented and assessed in a real-world trial involving four junior and three senior clinicians. RESULTS: The primary outcome measure was the algorithm's accuracy (ACC). The ACC of the best performance of algorithms to predict the targeted reduction amplitude, lens diameter, and alignment curve of the prescription was 0.80, 0.82, and 0.83, respectively. With the assistance of the AI system, the number of trials required to determine the final prescription significantly decreased for six of the seven participating clinicians (all P <0.01). This reduction was more significant among junior clinicians compared with consultants (0.76±0.60 vs. 0.32±0.60, P <0.001). Junior clinicians achieved clinical outcomes comparable to their seniors, as 93.96% (140/149) and 94.44% (119/126), respectively, of the eyes fitted achieved unaided visual acuity no worse than 0.8 ( P =0.864). CONCLUSIONS: AI can improve prescription efficiency and reduce discrepancies in clinical outcomes among clinicians with differing levels of experience. Embedment of AI in practice should ultimately help lessen the medical burden and improve service quality for myopia boom emerging worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA