RESUMO
We introduce the FlexoSERS sensor, which is notable for its high stretchability, sensitivity, and patternability. Featuring a hierarchically oriented jellyfish-like architecture constructed from stretchable gold nanowires, this sensor provides an ultrasensitive SERS signal even under 50% strain, with an enhancement factor (EF) of 3.3 × 1010. Impressively, this heightened performance remains consistently robust across 2,500 stretch-release cycles. The integration of nanowires with 3D-printed hydrogel enables a customizable FlexoSERS sensor, facilitating localized sweat collection and detection. The FlexoSERS sensor successfully detects and quantifies uric acid (UA) in both artificial and human sweat and functions as a pH sensor with repeatability and sensitivity across a pH range of 4.2-7.8, enabling real-time sweat monitoring during exercise. In summary, the rational architectural design, scalable fabrication process, and hydrogel integration collectively position this nanowire-based FlexoSERS sensor as a highly promising platform for customizable wearable sweat diagnostics.
Assuntos
Ouro , Nanofios , Suor , Dispositivos Eletrônicos Vestíveis , Ouro/química , Nanofios/química , Suor/química , Humanos , Técnicas Biossensoriais/instrumentação , Ácido Úrico/análise , Ácido Úrico/química , Hidrogéis/química , Concentração de Íons de HidrogênioRESUMO
An ultra-high sensitivity parallel-connected Fabry-Perot interferometers (FPIs) pressure sensor is proposed and demonstrated based on hollow core Bragg fiber (HCBF) and harmonic Vernier effect. The HCBF functions as a micro Fabry-Perot cavity and possesses low transmission loss. One FPI acts as the sensing unit while the other FPI is used as the reference unit to generate the Vernier effect. The sensing FPI was prepared by fusion splicing a section of HCBF between a single-mode fiber (SMF) and a hollow silica tube (HST), and the reference FPI was fabricated by sandwiching a piece of HCBF between two SMFs. Two FPIs with very different free spectral ranges (FSRs) in the fringe pattern were connected to the 2 × 2 coupler parallelly, which realizes the harmonic Vernier effect and ensures the stability of the interference fringe. Laboratory results exhibited that the pressure sensitivity can be enhanced to 119.3 nm/MPa within 0-0.5 MPa by the proposed sensor. Moreover, low-temperature crosstalk of 0.074 kPa/° was achieved. Compared with the traditional optical fiber gas pressure sensor, the advanced sensor features high sensitivity, stability, easy fabrication, and fast response, which can be a promising candidate for real-time and high-precision gas pressure monitoring.
RESUMO
Excitons in two-dimensional (2D) materials have attracted the attention of the community to develop improved photoelectronic devices. Previous reports are based on direct excitation where the out-of-plane illumination projects a uniform single-mode light spot. However, because of the optical diffraction limit, the minimal spot size is a few micrometers, inhibiting the precise manipulation and control of excitons at the nanoscale level. Herein, we introduced the in-plane coherent surface plasmonic interference (SPI) field to excite and modulate excitons remotely. Compared to the out-of-plane light, a uniform in-plane SPI suggests a more compact spatial volume and an abundance of mode selections for a single or an array of device modulation. Our results not only build up a fundamental platform for operating and encoding the exciton states at the nanoscale level but also provide a new avenue toward all-optical integrated valleytronic chips for future quantum computation and information applications.
RESUMO
In this paper, the hollow core Bragg fiber (HCBF)-based sensor based on anti-resonant reflecting optical waveguide (ARROW) model is proposed and experimentally demonstrated for simultaneous measurement of curvature and temperature by simply sandwiching a segment of HCBF within two single-mode fibers (SMFs). The special construction of a four-bilayer Bragg structure provides a well-defined periodic interference envelope in the transmission spectrum for sensing external perturbations. Owing to different sensitivities of interference dips, the proposed HCBF-based sensor is capable of dual-parameter detection by monitoring the wavelength shift. The highest curvature sensitivity of the proposed sensor is measured to be 74.4 pm/m-1 in the range of 1.1859-2.9047 m-1 with the adjusted R square value of 0.9804. In the meanwhile, the best sensitivity of temperature sensing was detected to be 16.8 pm/°C with the linearity of 0.997 with temperature range varying from 25 to 55 °C. Furthermore, with the aid of the 2 × 2 matrix, the dual demodulation of curvature and temperature can be carried out to realize the simultaneous measurement of these two parameters. Besides dual-parameter sensing based on wavelength shift, the proposed sensor can also measure temperature-insensitive curvature by demodulating the intensity of resonant dips.
RESUMO
As an indispensable component of various living organisms, the antioxidant proteins have been studied for anti-aging and prevention of various diseases, such as altitude sickness, coronary heart disease, and even cancer. However, the traditional experimental methods for identifying the antioxidant proteins are very expensive and time-consuming. Thus, to address the challenge, a new predictor, named ANOX, was developed in this study. Multiple features, such as frequency matrix features (FRE), amino acid and dipeptide composition (AADP), evolutionary difference formula features (EEDP), k-separated bigrams (KSB), and PSI-PRED secondary structure (PRED), were extracted to generate the original feature space. To find the optimized feature subset, the Max-Relevance-Max-Distance (MRMD) algorithm was implemented for feature ranking and our model received the best performance with the top 1170 features. Rigorous tests were performed to evaluate the performance of ANOX, and the results showed that ANOX achieved a major improvement in the prediction accuracy of the antioxidant proteins (AUC:0.930 and 0.935 using 5-fold cross-validation or the jackknife test) compared to the state-of-the-art predictor AOPs-SVM (AUC:0.869 and 0.885). The dataset used in this study and the source code of ANOX are all available at https://github.com/NWAFU-LiuLab/ANOX.
Assuntos
Algoritmos , Antioxidantes/química , Antioxidantes/metabolismo , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Estrutura Secundária de Proteína , Máquina de Vetores de SuporteRESUMO
Although error amplification (EA) feedback has been shown to improve performance on visuomotor tasks, the challenge of EA is that it concurrently magnifies task-irrelevant information that may impair visuomotor control. The purpose of this study was to improve the force control in a static task by preclusion of high-oscillatory components in EA feedback that cannot be timely used for error correction by the visuomotor system. Along with motor unit behaviors and corticomuscular coherence, force fluctuations (Fc) were modeled with non-linear SDA to contrast the reliance of the feedback process and underlying neurophysiological mechanisms by using real feedback, EA, and low-frequency error amplification (LF-EA). During the static force task in the experiment, the EA feedback virtually potentiated the size of visual error, whereas the LF-EA did not channel high-frequency errors above 0.8 Hz into the amplification process. The results showed that task accuracy was greater with the LF-EA than with the real and EA feedback modes, and that LF-EA led to smaller and more complex Fc. LF-EA generally led to smaller SDA variables of Fc (critical time points, critical point of Fc, the short-term effective diffusion coefficient, and short-term exponent scaling) than did real feedback and EA. The use of LF-EA feedback increased the irregularity of the ISIs of MUs but decreased the RMS of the mean discharge rate, estimated with pooled MU spike trains. Beta-range EEG-EMG coherence spectra (13-35 Hz) in the LF-EA condition were the greatest among the three feedback conditions. In summary, amplification of low-frequency errors improves force control by shifting the relative significances of the feedforward and feedback processes. The functional benefit arises from the increase in the common descending drive to promote a stable state of MU discharges.
RESUMO
Discharge patterns from a population of motor units (MUs) were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF) to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF). In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13-35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the ß-band.
Assuntos
Potenciais de Ação/fisiologia , Retroalimentação Sensorial/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Adulto , Eletromiografia , Entropia , Feminino , Humanos , MasculinoRESUMO
Force intermittency is one of the major causes of motor variability. Focusing on the dynamics of force intermittency, this study was undertaken to investigate how force trajectory is fine-tuned for static and dynamic force-tracking of a comparable physical load. Twenty-two healthy adults performed two unilateral resistance protocols (static force-tracking at 75% maximal effort and dynamic force-tracking in the range of 50%-100% maximal effort) using the left hand. The electromyographic activity and force profile of the designated hand were monitored. Gripping force was off-line decomposed into a primary movement spectrally identical to the target motion and a force intermittency profile containing numerous force pulses. The results showed that dynamic force-tracking exhibited greater intermittency amplitude and force pulse but a smaller amplitude ratio of primary movement to force intermittency than static force-tracking. Multi-scale entropy analysis revealed that force intermittency during dynamic force-tracking was more complex on a low time scale but more regular on a high time scale than that of static force-tracking. Together with task-dependent force intermittency properties, dynamic force-tracking exhibited a smaller 8-12 Hz muscular oscillation but a more potentiated muscular oscillation at 35-50 Hz than static force-tracking. In conclusion, force intermittency reflects differing trajectory controls for static and dynamic force-tracking. The target goal of dynamic tracking is achieved through trajectory adjustments that are more intricate and more frequent than those of static tracking, pertaining to differing organizations and functioning of muscular oscillations in the alpha and gamma bands.
Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Contração Isométrica/fisiologia , Percepção de Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Fenômenos Biomecânicos , Eletromiografia , Retroalimentação Sensorial/fisiologia , Humanos , Masculino , Fatores de Tempo , Adulto JovemRESUMO
PURPOSE: The study was undertaken to investigate the contralateral overflow effect on physiological tremors in pianists and nonmusicians. Group differences in cross modulation on underlying finger fractionated movement were characterized. METHODS: Physiological tremors of the right index, middle, ring, and little fingers were recorded in 12 right-handed pianists and 12 matched nonmusician controls; meanwhile, two contralateral resistance protocols (unilateral handgrip using the left hand at slight and maximal efforts) were randomly conducted. RESULTS: Digit tremors of the control and pianist groups were differentially modulated with the resistance protocols. An increase in gripping force led to cross excitations over 8-12 Hz digit tremors and interdigit tremor coupling for the nonmusicians. An opposite cross effect was noted for the pianists, who exhibited significant tremor suppression and the release of interdigit tremor coupling. Further analysis of tremor dynamics revealed that contralateral gripping reduced the complexity of digit tremors of the pianists but added to the tremor complexity of the nonmusicians. CONCLUSIONS: Cross modulation on digit tremors suggests that pianists could centrally suppress unintended motor excitation across the midline. When the opposite hand is active, pianists have superior finger independence that allows them to achieve artistic aspects of musical performance.
Assuntos
Música , Tremor/fisiopatologia , Adolescente , Adulto , Feminino , Dedos/fisiopatologia , Lateralidade Funcional/fisiologia , Força da Mão/fisiologia , Humanos , Masculino , Adulto JovemRESUMO
In light of the interplay among physiological finger tremors, this study was undertaken to investigate the transfer effect of fatigue on coordinative strategies of multiple fingers. Fourteen volunteers performed prolonged position tracking with a loaded middle finger while measures of neuromuscular function, including electromyographic activities of the extensor digitorum (ED)/flexor digitorum superficialis (FDS) and physiological tremors of the index, middle, ring, and little fingers, were monitored. The subjects exhibited inferior tracking congruence and an increase in ED activity at the end of the tracking. Fatigue spread was manifested in a remarkable increase in tremor across fingers, in association with enhanced involuntary tremor coupling among fingers that was topologically organized in relation to the distance of the digits from the middle finger. Principal component analysis suggested that an enhanced 8- to 12-Hz central rhythm contributed primarily to the tremor restructure following fatigue spread. The observed tremor reorganization validated the hypothesis that the effect of fatigue was not limited to the instructed finger and that fatigue functionally decreased independence of the digits. The spreading of fatigue weakens neural inputs that diverge to motor units acting on various digits because of fatigue-related enhancement of common drive at the supraspinal level.
Assuntos
Dedos/fisiologia , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia , Tremor , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Análise de Componente Principal , Adulto JovemRESUMO
The quiet stance is a complicated motor act requiring sophisticated sensorimotor integration to balance an artificial inverted pendulum with the ankle musculature. The objective of this study was to characterize the effects of stance pattern (bilateral stance vs. unilateral stance) and directional influence of light finger touch (medial-lateral vs. anterior-posterior) in unilateral stance upon responsiveness of the soleus H reflex. Sixteen healthy volunteers (mean age, 24.25+/-1.77 years) participated in four postural tasks with the eyes open, including the bilateral stance (BS), the unilateral stance without finger touch (USNT), and with finger touch in the medial-lateral direction (USML) and anterior-posterior direction (USAP). Meanwhile, the soleus H reflex, the pre-stimulus background activity of ankle antagonist pairs, and center of pressure (CoP) sway were measured. In reference to the BS, the USNT resulted in a significant stance effect on suppression of the soleus H reflex (H/M(max)) associated with enhancement of CoP sway. Among the conditions of unilateral stance, there was a marked directional effect of finger touch on modulation of the H/M(max). A greater disinhibition of the H/M(max) in consequence to light touch in the ML direction than in the AP direction was noted (H/M(max): USML>USAP>USNT). This directional modulation of the soleus H reflex concurred with haptic stabilization of posture in unilateral stance, showing a more pronounced reduction in CoP sway in the USML condition than in the USAP condition. However, alteration in postural sway and modulation of the soleus H reflex were not mutually correlated when stance pattern or touch vector varied. In conclusion, gating of the soleus H reflex indicated adaptation of an ankle strategy to stance pattern and haptic stabilization of posture. Relative to bilateral stance, postural maintenance in unilateral stance relied less on reflexive correction of the soleus. When finger touch was provided in line with prevailing postural threat in the lateral direction, postural stability in unilateral stance was better secured than finger touch in anterior-posterior direction, resulting in more pronounced disinhibition of the monosynaptic reflex pathway.