Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
ACS Appl Mater Interfaces ; 16(8): 10389-10397, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364294

RESUMO

Perovskite nanocrystals have absorbed increasing interest, especially in the field of optoelectronics, owing to their unique characteristics, including their tunable luminescence range, robust solution processability, facile synthesis, and so on. However, in practice, due to the inherent instability of the traditional long-chain insulating ligands surrounding perovskite quantum dots (PeQDs), the performance of the as-fabricated QLED is relatively disappointing. Herein, the zwitterion 3-(decyldimethylammonio)propanesulfonate (DLPS) with the capability of double passivating perovskite quantum dots could effectively replace the original long-chain ligand simply through a multistep post-treatment strategy to finally inhibit the formation of defects. It was indicated from theexperimental results that the DLPS, as one type of ligand with the bimolecular ion, was very adavntageous in replacing long-chain ligands and further suppressing the formation of defects. Finally, the perovskite quantum dots with greatly enhanced PLQY as high as 98% were effectively achieved. Additionally, the colloidal stability of the corresponding PeQDs has been significantly enhanced, and a transparent colloidal solution was obtained after 45 days under ambient conditions. Finally, the as-fabricated QLEDs based on the ligand-exchanged PeQDs exhibited a maximum brightness of 9464 cd/m2 and an EQE of 12.17%.

2.
Cancers (Basel) ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35954383

RESUMO

Although ovarian cancer, a gynecological malignancy, has the highest fatality rate, it still lacks highly specific biomarkers, and the differential diagnosis of ovarian masses remains difficult to determine for gynecologists. Our study aimed to obtain ovarian cancer-specific protein candidates from the circulating small extracellular vesicles (sEVs) and develop a protein panel for ovarian cancer screening and differential diagnosis of ovarian masses. In our study, sEVs derived from the serum of healthy controls and patients with cystadenoma and ovarian cancer were investigated to obtain a cancer-specific proteomic profile. In a discovery cohort, 1119 proteins were identified, and significant differences in the protein profiles of EVs were observed among groups. Then, 23 differentially expressed proteins were assessed using the parallel reaction monitoring in a validation cohort. Through univariate and multivariate logistic regression analyses, a novel model comprising three proteins (fibrinogen gamma gene (FGG), mucin 16 (MUC16), and apolipoprotein (APOA4)) was established to screen patients with ovarian cancer. This model exhibited an area under the receiver operating characteristic curve (AUC) of 0.936 (95% CI, 0.888-0.984) with 92.0% sensitivity and 82.9% specificity. Another panel comprising serum CA125, sEV-APOA4, and sEV-CD5L showed excellent performance (AUC 0.945 (95% CI, 0.890-1.000), sensitivity of 88.0%, specificity of 93.3%, and accuracy of 89.2%) to distinguish malignancy from benign ovarian masses. Altogether, our study provided a proteomic signature of circulating sEVs in ovarian cancer. The diagnostic proteomic panel may complement current clinical diagnostic measures for screening ovarian cancer in the general population and the differential diagnosis of ovarian masses.

3.
J Ovarian Res ; 15(1): 55, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513870

RESUMO

BACKGROUND: Increasing evidence has indicated that Maelstrom (MAEL) plays an oncogenic role in various human carcinomas. However, the exact function and mechanisms by which MAEL acts in epithelial ovarian cancer (EOC) remain unclear. RESULTS: This study demonstrated that MAEL was frequently overexpressed in EOC tissues and cell lines. Overexpression of MAEL was positively correlated with the histological grade of tumors, FIGO stage, and pT/pN/pM status (p < 0.05), and it also acted as an independent predictor of poor patient survival (p < 0.001). Ectopic overexpression of MAEL substantially promoted invasiveness/metastasis and induced epithelial-mesenchymal transition (EMT), whereas silencing MAEL by short hairpin RNA effectively inhibited its oncogenic function and attenuated EMT. Further study demonstrated that fibroblast growth factor receptor 4 (FGFR4) was a critical downstream target of MAEL in EOC, and the expression levels of FGFR4 were significantly associated with MAEL. (P < 0.05). CONCLUSION: Our findings suggest that overexpression of MAEL plays a crucial oncogenic role in the development and progression of EOC through the upregulation of FGFR4 and subsequent induction of EMT, and also provide new insights on its potential as a therapeutic target for EOC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição
4.
Dalton Trans ; 51(9): 3472-3484, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142300

RESUMO

Metal sulfides, one kind of electrode material with very high theoretical capacity, have been widely studied for use in lithium and sodium ion batteries. However, there are some problems hindering their applications in electrodes, such as low conductivity and volume expansion. The MOF introduces metals with different coordination strengths into an existing MOF structure, which improves the performance of the electrode to a certain extent. In this paper, Fe/Zn bimetallic MOF rod-like superstructure was prepared based on Ostwald theory. Accompanied by sulfuration, the MOF was effectively combined with MoS2 and GO, and the objective materials Fe7S8-C/ZnS-C@MoS2/rGO composites were successfully prepared. The MOF material provides a good frame and an efficient electron transport path, while the robust rGO wall effectively inhibits the pulverization of materials during the lithium/sodium intercalation/escalation courses. This particular material exhibited excellent cycling and rate capability performance when used in Li/Na-ion batteries. When used in Li-batteries, the electrode material delivered a specific capacity of 1598.3 mA h g-1 at 0.1 A g-1 and remained at 1196.7 mA h g-1 even after about 100 cycles and further exhibited a specific capacity of 368.68 mA h g-1 at the current rate of 5 A g-1 even after 1000 cycles, respectively. As for sodium batteries, these electrode materials exhibited an initial reversible capacity of 1053.6 mA h g-1 at 0.1 A g-1 and the reversible capacity was still as high as 592.2 mA h g-1 after 200 cycles. It is perhaps that this composite material with its particular architecture and composition is greatly beneficial for electron transfer and Li/Na ion diffusion. In the repeated physicochemical/nutrifying process, the appropriate distance between adjacent MOFs is of great help in preventing volume changes and thus improving the electrochemical performance.

5.
ACS Appl Mater Interfaces ; 13(40): 47807-47816, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34582174

RESUMO

Sensory adaptation is an essential function for humans to live on the earth. Herein, a hybrid synaptic phototransistor based on the mixed-halide perovskite/organic semiconductor film is reported. This hybrid phototransistor achieves photosensitive performance including a high photoresponsivity over 4 × 103 A/W and an excellent specific detectivity of 2.8 × 1016 Jones. Due to the photoinduced halide-ion segregation of the mixed-halide perovskites and their slow recovery properties, the experience-history-dependent sensory adaptation behavior can be mimicked. Moreover, the light pulse width, intensity, light wavelength, and gate bias can be used to regulate the adaptation processes to improve its adaptability and perceptibility in different environments. The CsPbBrxI3-x/organic semiconductor hybrid films produced by spin coating are beneficial to large-scale fabrication. This study fabricates a novel solution-processable light-stimulated synapse based on inorganic perovskites for mimicking the human sensory adaptation that makes it possible to approach artificial neural sensory systems.


Assuntos
Materiais Biomiméticos/química , Brometos/química , Iodetos/química , Transistores Eletrônicos , Adaptação Fisiológica , Biomimética/instrumentação , Biomimética/métodos , Brometos/efeitos da radiação , Césio/química , Césio/efeitos da radiação , Iodetos/efeitos da radiação , Chumbo/química , Chumbo/efeitos da radiação , Luz , Compostos de Organossilício/química , Poliestirenos/química , Semicondutores
6.
ACS Appl Mater Interfaces ; 13(11): 13362-13371, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33689288

RESUMO

An artificial synaptic device that can provide color discrimination, image storage, and image recognition is highly required to mimic the human vision for biological robots. All-inorganic halide perovskites have attracted extensive attention for the reason of their high stability and favorable photoelectric properties. In this study, a light-stimulated synaptic phototransistor based on a CsPbBr3/organic semiconductor hybrid film is reported. The fabricated CsPbBr3 film exhibits an island structure, which reduces the hysteresis effectively and at the same time achieves a high specific detectivity of up to 2 × 1015 Jones. The decay of the photocurrent can be delayed by changing the gate bias, which is essential for achieving high-performance light-stimulated synaptic devices. Due to the outstanding detectivity of the device, the obvious synaptic functions can be observed when triggered by a light signal with a power of 1.6 nW that is much weaker than previous most perovskite-based hybrid synaptic phototransistors under a low operating voltage of -1 V. The electrical power consumption of the device could be as low as 0.076 pJ when the power of light spike was 7.36 nW. Taking into account this characterization, with changing of light intensity or wavelength, the contrast of the image was enlarged, which can further promote the image recognition accuracy. More significantly, this CsPbBr3/TIPS hybrid film can be fabricated by facile and low-cost solution processes. This study indicates the great potential of solution-processed perovskite-based light-stimulated synapses for future artificial visual systems.

7.
Int J Gynecol Cancer ; 29(8): 1280-1284, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570543

RESUMO

INTRODUCTION: The solute carrier family 12 member 5 (SLC12A5) gene is playing a putative oncogenic role in colorectal carcinoma. However, the status of SLC12A5 amplification and expression in ovarian carcinoma and its potential clinical and/or prognostic significance has not yet been investigated. METHODS: In the present study, semi-quantitative staining and fluorescence in situ hybridization were used to investigate SLC12A5 protein expression and gene amplification levels. Samples were obtained from archival, formalin-fixed, paraffin-embedded pathological specimens consisting of 30 normal ovaries, 30 ovarian cystadenomas, 30 borderline ovarian tumors, and 147 invasive ovarian carcinomas. SLC12A5 immunohistochemical staining results, pathological parameters, and patient prognosis were then evaluated using various statistical models. Patient survival rate was also assessed using receiver-operator curve analysis. RESULTS: Our results revealed no SLC12A5 protein overexpression in normal ovaries. However, 7% of cystadenomas had SLC12A5 protein overexpression along with 17% of borderline tumors and 37% of ovarian carcinomas (P<0.01). Amplification of SLC12A5 was detected in 10.3% of ovarian carcinomas. Further correlational analyses showed that SLC12A5 protein overexpression in ovarian carcinomas was significantly associated with ascending histological grade, pT/pN/pM status, as well as FIGO stage (P<0.05). A subsequent univariate survival analysis of our ovarian carcinoma cohorts resulted in a significant association between SLC12A5 protein overexpression and decreased patient survival (44.3 and 85.9 months for high and low SLC12A5 protein expression, respectively; P<0.001). Importantly, additional multivariate analysis revealed that SLC12A5 protein expression was a significant, independent prognostic factor for overall survival in ovarian carcinoma patients (P=0.003). CONCLUSIONS: Collectively, these findings support the conclusion that SLC12A5 protein overexpression could indicate an invasive and/or aggressive phenotype of ovarian carcinoma. Future work will need to investigate whether SLC12A5 protein can serve as an independent prognostic molecular marker in patients with ovarian carcinoma.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/metabolismo , Simportadores/biossíntese , Carcinoma Epitelial do Ovário/patologia , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Ovarianas/patologia , Taxa de Sobrevida , Análise Serial de Tecidos
8.
Tohoku J Exp Med ; 245(3): 141-148, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29962380

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy with high recurrence and poor prognosis duo to the lack of effective biomarkers. TBC1 domain family member 16 (TBC1D16), a GTPase-activating protein, is involved in regulating intracellular trafficking in tumorigenesis and metastasis. However, the clinical significance of TBC1D16 in EOC remains unknown. In the present study, we investigated the expression and prognostic significance of TBC1D16 in EOC and its relationship with the expression of vascular endothelial growth factor (VEGF). The tissue specimens included 156 histologically confirmed EOC and 30 normal ovarian tissues. The expression of TBC1D16 and VEGF was detected by immunohistochemistry (IHC), and the immunoreactive score was calculated with signal intensity and percentage of positive cells. IHC results showed that TBC1D16 and VEGF were both mainly localized in cytoplasm of epithelial cells in normal ovarian tissues and were expressed in cancer cells. Based on the immunoreactive score, TBC1D16 expression in EOC was categorized as "high expression," compared with normal ovarian tissues (P < 0.05). The Chi-square test showed that high TBC1D16 expression was related to advanced pT stages (P = 0.029), but not correlated with other clinical features. Moreover, the TBC1D16 expression was significantly higher in EOC specimens with low VEGF expression (P < 0.001). Importantly, in both univariate and multivariate survival analyses, high expression of TBC1D16 was significantly correlated with good overall survival (OS). In conclusion, TBC1D16 is a predictive marker for favorable prognosis of EOC.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neoplasias Epiteliais e Glandulares/diagnóstico , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Carcinoma Epitelial do Ovário , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/patologia , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
ACS Appl Mater Interfaces ; 10(18): 15880-15887, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652475

RESUMO

Semiconductor quantum dots (QDs) have attracted extensive attention because of their remarkable optical and electrical characteristics. However, the practical application of QDs and further the QD composite films have greatly been hindered mainly owing to their essential drawbacks of extreme unstability under oxygen and water environments. Herein, one simple method has been employed to enhance enormously the stability of Cd xZn1- xSe yS1- y QD composite films by a combination of Cd xZn1- xSe yS1- y QDs and poly(vinylidene) fluoride (PVDF), which is characteristic of closely arranged molecular chains and strong hydrogen bonds. There are many particular advantages in using QD/PVDF composite films such as easy processing, low cost, large-area fabrication, and especially extreme stability even in the boiling water for more than 240 min. By employing K2SiF6:Mn4+ as a red phosphor, a prototype white light-emitting diode (WLED) with color coordinates of (0.3307, 0.3387), Tc of 5568 K, and color gamut 112.1NTSC(1931)% at 20 mA has been fabricated, and there is little variation under different excitation currents, indicating that the QD/PVDF composite films fabricated by this simple blade-coating process make them ideal candidates for liquid-crystal display backlight utilization via assembling a WLED on a large scale owing to its ultrahigh stability under severe environments.

10.
Sci Rep ; 6: 27957, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27296103

RESUMO

Particular N, S co-doped graphene/Fe3O4 hybrids have been successfully synthesized by the combination of a simple hydrothermal process and a subsequent carbonization heat treatment. The nanostructures exhibit a unique composite architecture, with uniformly dispersed Fe3O4 nanoparticles and N, S co-doped graphene encapsulant. The particular porous characteristics with many meso/micro holes/pores, the highly conductive N, S co-doped graphene, as well as the encapsulating N, S co-doped graphene with the high-level nitrogen and sulfur doping, lead to excellent electrochemical performance of the electrode. The N-S-G/Fe3O4 composite electrode exhibits a high initial reversible capacity of 1362.2 mAhg(-1), a high reversible specific capacity of 1055.20 mAhg(-1) after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 556.69 mAhg(-1) when cycled at the current density of 1000 mAg(-1), indicating that the N-S-G/Fe3O4 composite is a promising anode candidate for Li-ion batteries.

11.
Acupunct Med ; 34(3): 178-83, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26738508

RESUMO

BACKGROUND: We aimed to assess the endorsement of the Consolidation Standards of Reporting Trials (CONSORT) statement by Chinese journals of Traditional Chinese Medicine (TCM) and its incorporation into their editorial processes. METHODS: PubMed, Embase and major Chinese databases were searched to identify journals of TCM from China for inclusion. The latest 'instruction for authors' (IFA) of each included journal was obtained and any text mentioning CONSORT or CONSORT extension papers was extracted. Subsequently, the editor of each of the included journals was surveyed about their journal's endorsement of the CONSORT recommendations and their incorporation into editorial and peer review processes. RESULTS: Sixty-three journals of TCM from China were examined. Of these, only three (5%) and one (2%) of the 63 journals mentioned the CONSORT statement and extension papers, respectively, in their IFA. Fifty-four of 63 (86%) of surveyed journals responded, with the majority of respondents being editors. Only 20% (11/54) of the respondents reported that they had any knowledge of the CONSORT statement. Only 6% (3/54) of the editors reported that they required authors to comply with the CONSORT statement or that they incorporated it into their peer review and editorial processes. CONCLUSIONS: TCM journals in China endorsing the CONSORT statement constituted a small percentage of the total. The majority of editors surveyed were not familiar with the content of the CONSORT statement and extension papers. We strongly recommend that the China Periodicals Association issue a policy to promote the endorsement of the CONSORT statement and conduct relevant training for journal editors in China.


Assuntos
Guias como Assunto , Jornalismo Médico/normas , Medicina Tradicional Chinesa , Ensaios Clínicos Controlados Aleatórios como Assunto/normas , China , Políticas Editoriais , Humanos , Inquéritos e Questionários
12.
Sci Rep ; 5: 17473, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26621615

RESUMO

Carbon nanotubes (CNTs)/MnOx-Carbon hybrid nanofibers have been successfully synthesized by the combination of a liquid chemical redox reaction (LCRR) and a subsequent carbonization heat treatment. The nanostructures exhibit a unique one-dimensional core/shell architecture, with one-dimensional CNTs encapsulated inside and a MnOx-carbon composite nanoparticle layer on the outside. The particular porous characteristics with many meso/micro holes/pores, the highly conductive one-dimensional CNT core, as well as the encapsulating carbon matrix on the outside of the MnOx nanoparticles, lead to excellent electrochemical performance of the electrode. The CNTs/MnOx-Carbon hybrid nanofibers exhibit a high initial reversible capacity of 762.9 mAhg(-1), a high reversible specific capacity of 560.5 mAhg(-1) after 100 cycles, and excellent cycling stability and rate capability, with specific capacity of 396.2 mAhg(-1) when cycled at the current density of 1000 mAg(-1), indicating that the CNTs/MnOx-Carbon hybrid nanofibers are a promising anode candidate for Li-ion batteries.

13.
Nanoscale ; 3(10): 4440-7, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21927742

RESUMO

TiO(2)(B)@SnO(2)/carbon hybrid nanowires have been synthesized by two simple hydrothermal processes and subsequent heat treatment in argon. The composite has a unique architecture, as its morphology consists of particles having a TiO(2)(B) nanowire core and a porous SnO(2)/carbon nanoparticle shell layer. The unique core/shell structure and chemical composition will be useful for many potential applications, including the lithium ion battery. The electrochemical results on the composite are presented to demonstrate the superior cycling performance and rate capability of the TiO(2)(B)@SnO(2)/carbon nanowires. This composite exhibits a high reversible capacity of ∼669mAhg(-1), and excellent cycling stability, indicating that the composite is a promising anode material for Li-ion batteries.


Assuntos
Carbono/química , Lítio/química , Nanofios/química , Compostos de Estanho/química , Titânio/química , Argônio/química , Fontes de Energia Elétrica , Íons/química , Nanofios/ultraestrutura , Temperatura
14.
Nanoscale ; 2(6): 1011-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20648300

RESUMO

Novel plum-branch-like carbon nanofibers (CNFs) decorated with SnO2 nanocrystals have been synthesized by electrospinning and subsequent thermal treatment in an Ar/H2O atmosphere. The morphologies of the as-synthesized SnO2/CNF composites and the contents of carbon and SnO2 can be controlled by adjusting the heat treatment temperature. It is proposed that the growth of SnO2/CNF composites follows the outward diffusion of tin composites from the as-spun tin composite/polyacrylonitrile (PAN) nanofibers, pyrolysis of PAN and oxidation of tin composites, and then formation of SnO2 nanocrystals around the CNFs. This novel 1D SnO2/CNF composite may have potential application in nanobatteries, nano fuel cells, and nanosensors. A preliminary result has revealed that the SnO2/CNF composite presents favourable electrochemical performance in lithium-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA