Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Opt Express ; 28(20): 28969-28986, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114805

RESUMO

Light field microscopy (LFM) uses a microlens array (MLA) near the sensor plane of a microscope to achieve single-shot 3D imaging of a sample without any moving parts. Unfortunately, the 3D capability of LFM comes with a significant loss of lateral resolution at the focal plane. Placing the MLA near the pupil plane of the microscope, instead of the image plane, can mitigate the artifacts and provide an efficient forward model, at the expense of field-of-view (FOV). Here, we demonstrate improved resolution across a large volume with Fourier DiffuserScope, which uses a diffuser in the pupil plane to encode 3D information, then computationally reconstructs the volume by solving a sparsity-constrained inverse problem. Our diffuser consists of randomly placed microlenses with varying focal lengths; the random positions provide a larger FOV compared to a conventional MLA, and the diverse focal lengths improve the axial depth range. To predict system performance based on diffuser parameters, we, for the first time, establish a theoretical framework and design guidelines, which are verified by numerical simulations, and then build an experimental system that achieves < 3 µm lateral and 4 µm axial resolution over a 1000 × 1000 × 280 µm3 volume. Our diffuser design outperforms the MLA used in LFM, providing more uniform resolution over a larger volume, both laterally and axially.

3.
Light Sci Appl ; 9: 171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082940

RESUMO

Miniature fluorescence microscopes are a standard tool in systems biology. However, widefield miniature microscopes capture only 2D information, and modifications that enable 3D capabilities increase the size and weight and have poor resolution outside a narrow depth range. Here, we achieve the 3D capability by replacing the tube lens of a conventional 2D Miniscope with an optimized multifocal phase mask at the objective's aperture stop. Placing the phase mask at the aperture stop significantly reduces the size of the device, and varying the focal lengths enables a uniform resolution across a wide depth range. The phase mask encodes the 3D fluorescence intensity into a single 2D measurement, and the 3D volume is recovered by solving a sparsity-constrained inverse problem. We provide methods for designing and fabricating the phase mask and an efficient forward model that accounts for the field-varying aberrations in miniature objectives. We demonstrate a prototype that is 17 mm tall and weighs 2.5 grams, achieving 2.76 µm lateral, and 15 µm axial resolution across most of the 900 × 700 × 390 µm3 volume at 40 volumes per second. The performance is validated experimentally on resolution targets, dynamic biological samples, and mouse brain tissue. Compared with existing miniature single-shot volume-capture implementations, our system is smaller and lighter and achieves a more than 2× better lateral and axial resolution throughout a 10× larger usable depth range. Our microscope design provides single-shot 3D imaging for applications where a compact platform matters, such as volumetric neural imaging in freely moving animals and 3D motion studies of dynamic samples in incubators and lab-on-a-chip devices.

4.
Opt Express ; 27(20): 28075-28090, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684566

RESUMO

Mask-based lensless imagers are smaller and lighter than traditional lensed cameras. In these imagers, the sensor does not directly record an image of the scene; rather, a computational algorithm reconstructs it. Typically, mask-based lensless imagers use a model-based reconstruction approach that suffers from long compute times and a heavy reliance on both system calibration and heuristically chosen denoisers. In this work, we address these limitations using a bounded-compute, trainable neural network to reconstruct the image. We leverage our knowledge of the physical system by unrolling a traditional model-based optimization algorithm, whose parameters we optimize using experimentally gathered ground-truth data. Optionally, images produced by the unrolled network are then fed into a jointly-trained denoiser. As compared to traditional methods, our architecture achieves better perceptual image quality and runs 20× faster, enabling interactive previewing of the scene. We explore a spectrum between model-based and deep learning methods, showing the benefits of using an intermediate approach. Finally, we test our network on images taken in the wild with a prototype mask-based camera, demonstrating that our network generalizes to natural images.

5.
Light Sci Appl ; 7: 66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245813

RESUMO

We report a deep learning-enabled field-portable and cost-effective imaging flow cytometer that automatically captures phase-contrast color images of the contents of a continuously flowing water sample at a throughput of 100 mL/h. The device is based on partially coherent lens-free holographic microscopy and acquires the diffraction patterns of flowing micro-objects inside a microfluidic channel. These holographic diffraction patterns are reconstructed in real time using a deep learning-based phase-recovery and image-reconstruction method to produce a color image of each micro-object without the use of external labeling. Motion blur is eliminated by simultaneously illuminating the sample with red, green, and blue light-emitting diodes that are pulsed. Operated by a laptop computer, this portable device measures 15.5 cm × 15 cm × 12.5 cm, weighs 1 kg, and compared to standard imaging flow cytometers, it provides extreme reductions of cost, size and weight while also providing a high volumetric throughput over a large object size range. We demonstrated the capabilities of this device by measuring ocean samples at the Los Angeles coastline and obtaining images of its micro- and nanoplankton composition. Furthermore, we measured the concentration of a potentially toxic alga (Pseudo-nitzschia) in six public beaches in Los Angeles and achieved good agreement with measurements conducted by the California Department of Public Health. The cost-effectiveness, compactness, and simplicity of this computational platform might lead to the creation of a network of imaging flow cytometers for large-scale and continuous monitoring of the ocean microbiome, including its plankton composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA