Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 10(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266150

RESUMO

The study was conducted to evaluate the effects of partial replacement of soybean meal (SBM) by 15% raw or fermented rapeseed cake (RRC or FRC) to broilers' diets on growth performance, nutrient utilization, methane emission, and breast muscle fatty acid (FA) composition. A total of 420 one-day-old female Ros 308 broilers were used in three independent experiments (300 birds in the first experiment and 60 in the second and third experiments). In each trial, three treatments were set up: a control group (without rapeseed), and diets replaced soybean meal with 15% addition of RRC or FRC. Birds fed the FRC diet experienced no effect (p > 0.05) on performance or nutrients utilization. Methane emission and total methanogen population in the ceca was decreased (p < 0.05) with the FRC diet. The concentrations of n-3 and n-6 FAs in the breast tissue of fourteen-day-old birds were not affected (p > 0.05) by FRC. However, the n-6/n-3 ratio in the breast muscle of 28-day-old birds was reduced (p < 0.001). In conclusion, the replacement of SBM by FRC in the broiler diets did not show any unfavorable effects on performance or nutrient utilization. Furthermore, the breast meat FA profile was improved, methanogen counts significantly decreased, and methane emission was limited.

2.
J Anim Sci ; 96(11): 4868-4881, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30085144

RESUMO

Active plant metabolites (APM) are recognized as modifiers of ruminal microbial fermentation including methanogenesis and biohydrogenation of fatty acids (FA). Coleus amboinicus Lour. leaves (CAL) are rich in several APM, which could serve as ruminal fermentation modulators. A phytochemical analysis showed that CAL contain phenolic acids (10.4 mg·g-1 dry matter [DM]; high in rosmarinic acid), flavonoids (2.6 mg·g-1 DM), diterpenes (2 mg·g-1 DM), and linolenic acid (35.4 g (100 g)-1 FA). This study aimed to investigate the effect of CAL on ruminal methanogenesis and biohydrogenation as well as basic fermentation characteristics and microbial populations. The in vitro experiment was carried out using Hohenheim gas test system with 40 mL of buffered ruminal fluid incubated for 24 h at 39 °C in anaerobic conditions. Approximately 400 mg (DM basis) of total mixed ration (TMR) was used as a control substrate and the CAL substrate was used at doses of 10, 20, 40, and 80 mg DM replacing equal amounts of TMR. Addition of CAL decreased methane production up to 30% linearly as the amount of CAL increased (P < 0.05). In vitro dry matter digestibility and ammonia tended to increase with increasing doses of CAL. Concentration of total volatile fatty acids was not affected by the CAL although there appeared to be a minor positive linear trend; however, acetate, butyrate, and isobutyrate proportion increased quadratically (P < 0.001). CAL tended to linearly increase α-linolenic acid and conjugated linoleic acid as well as increased stearic acid concentration in buffered ruminal fluid. CAL particularly increased total protozoa and bacterial populations during fermentation, but inhibited methanogens. It is concluded that the CAL may be promising to be used as a feed additive to decrease methanogenesis as well as biohydrogenation of FA in the rumen.


Assuntos
Coleus/química , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Metano/metabolismo , Preparações de Plantas/farmacologia , Animais , Dieta/veterinária , Digestão/efeitos dos fármacos , Ácidos Graxos Voláteis/análise , Feminino , Fermentação/efeitos dos fármacos , Hidrogenação , Hidroxibenzoatos/análise , Folhas de Planta/química , Preparações de Plantas/química , Rúmen/metabolismo , Rúmen/microbiologia , Rúmen/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA