Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Fitoterapia ; 176: 106017, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740343

RESUMO

Four new meroterpenoids, namely nivalones CF (1-4), along with a known meroterpenoid, cannabiorcicyclolic acid (5), were isolated from the branches and leaves of Rhododendron nivale. The chemical structures of compounds 1-4 were elucidated through comprehensive spectroscopic analyses, including NMR, UV-Vis, IR, ECD spectroscopy, as well as HR-ESI-MS. The isolated compounds were evaluated for their anti-inflammatory and neuroprotective properties. The inhibitory activity of compound 5 against lipopolysaccharide (LPS)-induced nitric oxide (NO) production was initially demonstrated, showcasing an IC50 value of 21.1 µM. Additionally, both compounds 2 and 5 displayed a notable effect on the viability of H2O2-damaged SH-SY5Y cells, indicating their significant neuroprotection effects.

2.
J Med Chem ; 66(22): 15288-15308, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37917221

RESUMO

Necroptosis, a regulated cell death form, is a critical contributor in various inflammatory diseases. We previously identified a phenoxybenzothiazole SZM-610 as a RIPK1 and RIPK3 necroptosis inhibitor. We conducted extensive studies to investigate different chemical components' effects on antinecroptosis activity and RIPK1/3 activity. This study focused on replacing the linker in phenoxybenzothiazoles to assess its impact. Remarkably, compound 10, bearing a novel 3,2'-phenylbenzothiazole scaffold, exhibited fourfold more potent nanomolar activity than SZM-610. Unlike SZM-610, this compound inhibited RIPK1 (Kd = 17 nM) and eliminated RIPK3 inhibition at 5000 nM. Various linkages confirmed the 3,2'-phenylbenzothiazole superior potency. Moreover, this compound specifically inhibited necroptosis by inhibiting RIPK1, RIPK3, and MLKL phosphorylation. In a TNF-induced inflammatory model, it dose-dependently (1.25-5 mg/kg) protected mice from hypothermia and death, surpassing SZM-610's effectiveness. These findings highlight 3,2'-phenylbenzothiazole as a promising lead structure for developing drugs targeting necroptosis-related diseases.


Assuntos
Necroptose , Proteínas Quinases , Camundongos , Animais , Proteínas Quinases/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Apoptose
3.
Fitoterapia ; 171: 105711, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866425

RESUMO

Motivated by the potential anti-inflammatory effect of the crude extract of endophytic fungus Microdiplodia sp. CJ01 derived from Camellia sinensis, chemical investigation of the extract of Microdiplodia sp. CJ01 led to the isolation and identification of sixteen terpenoids, including five undescribed eremophilane sesquiterpenoids named microdiplodins A-E (1-5), one undescribed meroterpenoid 13-carboxymacrophorin A (13), seven known eremophilane sesquiterpenoids (6-12), and three known meroterpenoids (14-16). The structures of these compounds were elucidated based on extensive spectroscopic analysis, including nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) data. Their absolute configurations were determined by calculational and experimental electronic circular dichroism (ECD) data. Anti-inflammatory activity assays revealed that compounds 3, 4, 14-16 exhibited moderate inhibitory effects on the production of nitric oxide (NO) in the lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells.


Assuntos
Ascomicetos , Sesquiterpenos , Terpenos/farmacologia , Terpenos/química , Estrutura Molecular , Ascomicetos/química , Sesquiterpenos Policíclicos , Dicroísmo Circular , Anti-Inflamatórios
4.
Sci Adv ; 9(25): eadg5964, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343091

RESUMO

Despite the great success achieved by photoactivated chemotherapy, eradicating deep tumors using external sources with high tissue penetration depth remains a challenge. Here, we present cyaninplatin, a paradigm of Pt(IV) anticancer prodrug that can be activated by ultrasound in a precise and spatiotemporally controllable manner. Upon sono-activation, mitochondria-accumulated cyaninplatin exhibits strengthened mitochondrial DNA damage and cell killing efficiency, and the prodrug overcomes drug resistance as a consequence of combined effects from released Pt(II) chemotherapeutics, the depletion of intracellular reductants, and the burst of reactive oxygen species, which gives rise to a therapeutic approach, namely sono-sensitized chemotherapy (SSCT). Guided by high-resolution ultrasound, optical, and photoacoustic imaging modalities, cyaninplatin realizes the overall theranostics of tumors in vivo with superior efficacy and biosafety. This work highlights the practical utility of ultrasound to precisely activate Pt(IV) anticancer prodrugs for the eradication of deep tumor lesions and broadens the biomedical uses of Pt coordination complexes.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Humanos , Platina , Pró-Fármacos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
5.
Chem Biodivers ; 20(6): e202300477, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37212458

RESUMO

Five eremophilane sesquiterpenes including three new ones, named paraconions A-C (1-3), were isolated from an endophytic fungus, Paraconiothyrium sp. from Artemisia selengensis. The structures of these new compounds were established based on spectroscopic methods, including nuclear magnetic resonance (NMR), ultraviolet (UV), and infrared (IR) spectroscopy, as well as high resolution electrospray ionization mass spectrometry (HR-ESI-MS). An anti-inflammatory assay indicated that paraconion B (2) inhibited lipopolysaccharide-induced nitric oxide (NO) production in RAW 264.7 cells, with an IC50 value of 51.7 µM. The compounds discovered in this study will enrich the structural types of secondary metabolites of the endophytic fungus Paraconiothyrium sp.


Assuntos
Ascomicetos , Sesquiterpenos , Animais , Camundongos , Ascomicetos/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Espectroscopia de Ressonância Magnética , Células RAW 264.7 , Sesquiterpenos/química , Estrutura Molecular
6.
ChemMedChem ; 17(23): e202200482, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36178204

RESUMO

The efficacy of platinum drugs is limited by severe side effects, drug resistance, and poor pharmacokinetic properties. Utilizing long-lasting blood components as drug carriers is a promising strategy to improve the circulation half-lives and tumor accumulation of platinum drugs. Non-immunogenic blood cells such as erythrocytes and blood proteins such as albumins, which have long lifespans, are suitable for the delivery of platinum drugs. In this concept, we briefly summarize the strategies of applying blood components as promising carriers to deliver small-molecule platinum drugs for cancer treatment. Examples of platinum drugs that are encapsulated, non-covalently attached, and covalently bound to erythrocytes and plasma proteins such as albumin and apoferritin are introduced. The potential methods to increase the stability of platinum-based thiol-maleimide conjugates involved in these delivery systems are also discussed. This concept may enlighten researchers with more ideas on the future development of novel platinum drugs that have excellent pharmacokinetic properties and antitumor performance in vivo.


Assuntos
Antineoplásicos , Platina , Antineoplásicos/farmacologia
7.
Angew Chem Int Ed Engl ; 61(25): e202203838, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35352863

RESUMO

The short circulatory half-lives and low tumor accumulation of carboplatin greatly limit the drug's efficacy in vivo. Herein, we address these challenges by using a prodrug strategy and present the rational design of a novel platinum(IV) anticancer prodrug that can hitchhike on erythrocytes. This prodrug, designated as ERY1-PtIV , can bind to erythrocytes efficiently and stably, possessing a circulatory half-life 18.5 times longer than that of carboplatin in mice. This elongated circulatory half-life enables platinum to accumulate at levels 7.7 times higher than with carboplatin, with steady levels in the tumors. As a consequence, the ERY1-PtIV prodrug is proved to exhibit significantly enhanced antitumor activity and reduced side effects compared with carboplatin. Collectively, our novel approach highlights an efficient strategy to utilize intrinsic erythrocytes as auto-binding carriers to enhance the tumor accumulation and subsequent antitumor efficacy of platinum drugs.


Assuntos
Antineoplásicos , Neoplasias , Pró-Fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carboplatina/farmacologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Eritrócitos , Camundongos , Neoplasias/tratamento farmacológico , Platina/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
8.
Dalton Trans ; 51(14): 5394-5398, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35244663

RESUMO

We report a strategy to use a fluorescence "turn on" sensor to quantify the reduction of platinum(IV) prodrugs in a real-time mode by simply and conveniently monitoring the fluorescence intensity. Proteins with high molecular weights, especially those between 10 and 100 kDa, contribute more to the reduction of the platinum(IV) complex in cell extracts.


Assuntos
Antineoplásicos , Pró-Fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Platina
9.
Dalton Trans ; 51(3): 885-897, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34927657

RESUMO

Pt(IV) complexes bearing axial carbonate linkages have drawn much attention recently. A synthetic method behind this allows the hydroxyl group of bioactive ligands to be attached to the available hydroxyl group of Pt(IV) complexes, and the rapid release of free drugs is achieved after the reduction of carbonate-linked Pt(IV) complexes. Further understanding on the properties of Pt(IV) carbonates such as hydrolytic stability and reduction profiles, however, is hindered by limited research. Herein, six mono-carbonated Pt(IV) complexes in which the carbonate axial ligands possess various electron-withdrawing powers were synthesized, and the corresponding mono-carboxylated analogues were also prepared as references to highlight the different properties. The influence of the coordination environment towards the hydrolysis and reduction rate of Pt(IV) carbonates and carboxylates was explored. The mono-carbonated Pt(IV) complexes are both less stable and reduced faster than the corresponding mono-carboxylated ones. Moreover, the hydrolysis and reduction profiles are dependent not only on the electron-withdrawing ability of the carbonates but also on the nature of the opposite axial ligands. Besides, the exploration of the hydrolytic pathway for Pt(IV) carbonates suggests that the process proceeds by an attack of OH- on the carbonyl carbon, followed by elimination, which is different from that of Pt(IV) carboxylates. This study provides some information on the influence of axial carbonate ligands with different electron-withdrawing abilities on the properties of the Pt(IV) center, which may inspire new thoughts on the design of "multi-action" Pt(IV) prodrugs.


Assuntos
Carbonatos , Platina/química , Platina/farmacologia , Pró-Fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrólise
10.
Dalton Trans ; 50(39): 13737-13747, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519297

RESUMO

Carboplatin-based platinum(IV) prodrugs containing axial carboxylates are relatively resistant to reduction to release active platinum(II) species and kill cancer cells. To facilitate the activation process, a boron dipyrromethene (BODIPY) ligand has been utilized as a photoabsorber at the axial position to photoactivate carboplatin-based platinum(IV) complexes. However, the influence of the axial ligands on the photoactivation rate of the platinum center and the subsequent biological activity are still unknown. In this study, we report the design and synthesis of a series of carboplatin-based photoactivable platinum(IV) prodrugs containing BODIPY axial ligands with different lengths. The resulting BODIPY-conjugated platinum(IV) prodrugs OH2C-OH8C bearing hydroxido ligands at the opposite axial position are slightly less stable in the dark than the corresponding prodrugs AC2C-AC8C containing acetato ligands. The prodrugs OH3C-OH8C can be photoactivated under irradiation in eight minutes, and the photoactivation rate is further improved in prodrugs AC3C-AC8C where only twenty seconds are needed. Moreover, the prodrug AC3C, in which the linker between the BODIPY photoabsorber and the platinum center has an appropriate length, is photoactivated the quickest among the acetylated prodrugs AC2C-AC8C. The high cellular accumulation may contribute more to the moderate photocytotoxicity of these prodrugs. Our research highlights the way to promote the photoactivation of BODIPY-conjugated platinum(IV) anticancer prodrugs by optimization of axial ligands and may contribute to the future rational design of photoactivable platinum-based complexes.


Assuntos
Pró-Fármacos
11.
Chem Sci ; 12(19): 6536-6542, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34040729

RESUMO

Selective activation of prodrugs at diseased tissue through bioorthogonal catalysis represents an attractive strategy for precision cancer treatment. Achieving efficient prodrug photoactivation in cancer cells, however, remains challenging. Herein, we report two Pt(iv) complexes, designated as rhodaplatins {rhodaplatin 1, [Pt(CBDCA-O,O)(NH3)2(RhB)OH]; rhodaplatin 2, [Pt(DACH)ox(RhB)(OH)], where CBDCA is cyclobutane-1,1-dicarboxylate, RhB is rhodamine B, DACH is (1R,2R)-1,2-diaminocyclohexane, and ox is oxalate}, that bear an internal photoswitch to realize efficient accumulation, significant co-localization, and subsequent effective photoactivation in cancer cells. Compared with the conventional platform of external photocatalyst plus substrate, rhodaplatins presented up to 4.8 104-fold increased photoconversion efficiency in converting inert Pt(iv) prodrugs to active Pt(ii) species under physiological conditions, due to the increased proximity and covalent bond between the photoswitch and Pt(iv) substrate. As a result, rhodaplatins displayed increased photocytotoxicity compared with a mixture of RhB and conventional Pt(iv) compound in cancer cells including Pt-resistant ones. Intriguingly, rhodaplatin 2 efficiently accumulated in the mitochondria and induced apoptosis without causing genomic DNA damage to overcome drug resistance. This work presents a new approach to develop highly effective prodrugs containing intramolecular photoswitches for potential medical applications.

12.
Inorg Chem ; 59(16): 11676-11687, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799457

RESUMO

Platinum(IV) complexes containing carboxylate and carbamate ligands at the axial position have been reported previously. A better understanding of the similarity and difference between the two types of ligands will provide us with new insights and more choices to design novel Pt(IV) complexes. In this study, we systematically investigated and compared the properties of Pt(IV) complexes bearing the two types of ligands. Ten pairs of unsymmetric Pt(IV) complexes bearing axial carbamate or carboxylate ligands were synthesized and characterized. The stability of these Pt(IV) complexes in a PBS buffer with or without a reducing agent was investigated, and most of these complexes exhibited good stability. Besides, most Pt(IV) prodrugs with carbamate axial ligands were reduced faster than the corresponding ones with carboxylate ligands. Furthermore, the aqueous solubilities and lipophilicities of these Pt(IV) complexes were tested. All the carbamate complexes showed better aqueous solubility and decreased lipophilicity as compared to those of the corresponding carboxylate complexes, due to the increased polarity of carbamate ligands. Biological properties of these complexes were also evaluated. Many carbamate complexes showed cytotoxicity similar to that of the carboxylate complexes, which may derive from the lower cellular accumulation but faster reduction of the former. Our research highlights the differences between the Pt(IV) prodrugs containing carbamate and carboxylate axial ligands and may contribute to the future rational design of Pt-based anticancer prodrugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Carbamatos/química , Ácidos Carboxílicos/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Estabilidade de Medicamentos , Ligantes , Oxirredução
13.
Inorg Chem ; 59(16): 11823-11833, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799491

RESUMO

Platinum drugs are widely used in clinics to treat various types of cancer. However, a number of severe side effects induced by the nonspecific binding of platinum drugs to normal tissues limit their clinical use. The conversion of platinum(II) drugs into more inert platinum(IV) derivatives is a promising strategy to solve this problem. Some platinum(IV) prodrugs, such as carboplatin-based tetracarboxylatoplatinum(IV) prodrugs, are not easily reduced to active platinum(II) species, leading to low cytotoxicity in vitro. In this study, we report the design and synthesis of a carboplatin-based platinum(IV) prodrug functionalized with a boron dipyrromethene (bodipy) ligand at the axial position, and the ligand acts as a photoabsorber to photoactivate the platinum(IV) prodrug. This compound, designated as BODI-Pt, is highly stable in the dark but quickly activated under irradiation to release carboplatin and the axial ligands. A cytotoxic study reveals that BODI-Pt is effective under irradiation, with cytotoxicity 11 times higher than that in the dark and 39 times higher than that of carboplatin in MCF-7 cells. Moreover, BODI-Pt has been proven to kill cancer cells by binding to the genomic DNA, arresting the cell cycle at the G2/M phase, inducing oncosis, and generating ROS upon irradiation. In summary, we report a green-light-activatable and carboplatin-based Pt(IV) prodrug with improved cytotoxicity against cancer cells, and our strategy can be used as a promising way to effectively activate carboplatin-based platinum(IV) prodrugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Boro/química , Carboplatina/química , Corantes Fluorescentes/química , Luz , Pró-Fármacos/química , Carboplatina/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pró-Fármacos/farmacologia
14.
Inorg Chem ; 58(16): 11076-11084, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31393117

RESUMO

Platinum drugs including cisplatin are widely used in clinics to treat various types of cancer. However, the lack of cancer-cell selectivity is one of the major problems that lead to side effects in normal tissues. Luteinizing hormone-releasing hormone (LHRH) receptors are overexpressed in many types of cancer cells but rarely presented in normal cells, making LHRH receptor a good candidate for cancer targeting. In this study, we report the synthesis and cytotoxic study of a novel platinum(IV) anticancer prodrug functionalized with LHRH peptide. This LHRH-platinum(IV) conjugate is highly soluble in water and quite stable in a PBS buffer. Cytotoxic study reveals that the prodrug selectively targets LHRH receptor-positive cancer cell lines with the cytotoxicities 5-8 times higher than those in LHRH receptor-negative cell lines. In addition, the introduction of LHRH peptide enhances the cellular accumulation in a manner of receptor-mediated endocytosis. Moreover, the LHRH-platinum(IV) prodrug is proved to kill cancer cells by binding to the genomic DNA, inducing apoptosis, and arresting the cell cycle at the G2/M phase. In summary, we report a novel LHRH-platinum(IV) anticancer prodrug having largely improved selectivity toward LHRH receptor-positive cancer cells, relative to cisplatin.


Assuntos
Antineoplásicos/farmacologia , Platina/farmacologia , Pró-Fármacos/farmacologia , Receptores LHRH/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta à Radiação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Platina/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Receptores LHRH/metabolismo , Relação Estrutura-Atividade
15.
Nat Commun ; 8(1): 1390, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123088

RESUMO

Paclitaxel (PTX) is among the most commonly used first-line drugs for cancer chemotherapy. However, its poor water solubility and indiscriminate distribution in normal tissues remain clinical challenges. Here we design and synthesize a highly water-soluble nucleolin aptamer-paclitaxel conjugate (NucA-PTX) that selectively delivers PTX to the tumor site. By connecting a tumor-targeting nucleolin aptamer (NucA) to the active hydroxyl group at 2' position of PTX via a cathepsin B sensitive dipeptide bond, NucA-PTX remains stable and inactive in the circulation. NucA facilitates the uptake of the conjugated PTX specifically in tumor cells. Once inside cells, the dipeptide bond linker of NucA-PTX is cleaved by cathepsin B and then the conjugated PTX is released for action. The NucA modification assists the selective accumulation of the conjugated PTX in ovarian tumor tissue rather than normal tissues, and subsequently resulting in notably improved antitumor activity and reduced toxicity.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Peptídeos/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Fosfoproteínas/farmacologia , Proteínas de Ligação a RNA/farmacologia , Animais , Antineoplásicos/química , Aptâmeros de Peptídeos/química , Catepsina B/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/patologia , Paclitaxel/química , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Ensaios Antitumorais Modelo de Xenoenxerto , Nucleolina
16.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28767098

RESUMO

Nucleic acid aptamers have minimal immunogenicity, high chemical synthesis production, low cost and high chemical stability when compared with antibodies. However, the susceptibility to nuclease degradation, rapid excretion through renal filtration and insufficient binding affinity hindered their development as drug candidates for therapeutic applications. In this review, we will discuss methods to conquer these challenges and highlight recent developments of chemical modifications and technological advances that may enable early aptamers to be translated into clinical therapeutics.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/uso terapêutico , Humanos
17.
Int J Mol Sci ; 17(5)2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27223283

RESUMO

Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.


Assuntos
Antineoplásicos Fitogênicos/química , Paclitaxel/química , Pró-Fármacos/síntese química , Animais , Antineoplásicos Fitogênicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Paclitaxel/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Solubilidade , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 17(2)2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26848651

RESUMO

Antibody-drug conjugates (ADCs) have become a promising targeted therapy strategy that combines the specificity, favorable pharmacokinetics and biodistributions of antibodies with the destructive potential of highly potent drugs. One of the biggest challenges in the development of ADCs is the application of suitable linkers for conjugating drugs to antibodies. Recently, the design and synthesis of linkers are making great progress. In this review, we present the methods that are currently used to synthesize antibody-drug conjugates by using thiols, amines, alcohols, aldehydes and azides.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/química , Desenho de Fármacos , Imunoconjugados/química , Animais , Reagentes de Ligações Cruzadas/química , Humanos
19.
Bioorg Med Chem Lett ; 26(5): 1386-90, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26856921

RESUMO

Although the antischistosomal activities of N,N'-arylurea analogs were reported, systematic structure-activity relationships have not been conducted. In this Letter, we reported the design, synthesis and evaluation of 45 N,N'-arylurea analogs. Among these prepared compounds, 13 compounds were urea linker modified and 32 were N,N'-arylurea derivatives. The activity evaluation revealed 12 analogs exhibited IC50 values lower than 22.6µM, and 7 of them had IC50 less than 10µM against the juvenile Schistosoma japonicum in vitro. Their worm killing potency was even higher against adult worm. Unfortunately, low to moderate worm burden reduction of 0-33.4% was recorded after administration of a single oral dose of 200mg/kg or 400mg/kg to mice harboring S. japonicum.


Assuntos
Schistosoma japonicum/efeitos dos fármacos , Esquistossomicidas/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Animais , Relação Dose-Resposta a Droga , Estrutura Molecular , Esquistossomicidas/síntese química , Esquistossomicidas/química , Relação Estrutura-Atividade , Ureia/química
20.
Future Med Chem ; 7(6): 713-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996065

RESUMO

BACKGROUND: The widespread use of praziquantel for the treatment of schistosomiasis has led to concerns over the potential development of drug resistance. Therefore, the discovery of novel antischistosomal agents is imperative. In this study, a series of praziquantel and endoperoxide conjugates were synthesized and evaluated as potential antischistosomal agents. RESULTS: Some compounds exhibited high efficacy against both adult and juvenile Schistosoma, in in vitro studies. Structure-activity relationship (SAR) analysis revealed that compounds with amide bond linker and cyclopentyl adjacent to the 1,2,4,5-tetraxane pharmacophore displayed the highest efficacy. Overall, compounds showed consistent activity against Schistosoma japonicum and Schistosoma mansoni. In vivo study resulted in moderate but statistically significant activity. CONCLUSION: Important preliminary results were obtained from thorough activity evaluation of praziquantel-endoperoxide conjugates. Further pharmacokinetic property investigation is necessary to improve in vivo efficacy.


Assuntos
Praziquantel/análogos & derivados , Praziquantel/uso terapêutico , Schistosoma japonicum/efeitos dos fármacos , Esquistossomose Japônica/tratamento farmacológico , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico , Animais , Desenho de Fármacos , Humanos , Camundongos , Peróxidos/química , Peróxidos/farmacologia , Peróxidos/uso terapêutico , Praziquantel/farmacologia , Esquistossomose Japônica/parasitologia , Esquistossomicidas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA