Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Angew Chem Int Ed Engl ; : e202415092, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39290153

RESUMO

Chiral supramolecular aggregates have the potential to explore circularly polarized lasing with large dissymmetry factors. However, the controllable assembly of chiral superstructures towards deterministic circularly polarized laser emission remains elusive. Here, we design a pair of chiral organic molecules capable of stacking into a pair of definite helical superstructures in microcrystals, which enables circularly polarized lasing with deterministic chirality and high dissymmetry factors. The microcrystals function as optical cavities and gain media simultaneously for laser oscillations, while the supramolecular helices endow the laser emission with strong and opposite chirality. As a result, the microcrystals of two enantiomers allow for circularly polarized laser emission with opposite chirality and high dissymmetry factors up to ~1.0. This work demonstrates the chiral supramolecular assemblies as an excellent platform for high-performance circularly polarized lasers.

2.
Phys Chem Chem Phys ; 26(37): 24498-24505, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39268587

RESUMO

Light-emitting electrochemical cells (LECs) are appealing for cost-effective, large-area emission applications; however, their luminescence efficiency is significantly limited by exciton annihilation caused by high concentration polarons. Here, we present thermally activated delayed fluorescence (TADF) sensitized fluorescence LECs (TSF-LECs) that achieve a record 9% EQE. The TADF sensitizers with rapid reverse intersystem crossing (RISC) rates can effectively convert triplet excitons to singlet excitons in LECs, thereby establishing a more efficient overall energy transfer pathway. Importantly, magneto-electroluminescence measurements indicate that the additional RISC route in TSF-LECs significantly suppresses the annihilation of triplet excitons and thus reduces exciton loss under high concentration polaron conditions. Compared to LECs without a sensitizer, TSF-LECs exhibit improved EQE and luminance, extended operational lifetimes, and suppressed efficiency roll-off. A flexible display prototype based on TSF-LECs was further fabricated, capable of stably displaying high-brightness preset patterns for extended periods. The exploration of the exciton dynamics in high concentration polaron environments offers valuable insights for future developments in high-efficiency LEC technology.

3.
Natl Sci Rev ; 11(9): nwae244, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39211835

RESUMO

The spin of electrons plays a vital role in chemical reactions and processes, and the excited state generated by the absorption of photons shows abundant spin-related phenomena. However, the importance of electron spin in photochemistry studies has been rarely mentioned or summarized. In this review, we briefly introduce the concept of spin photochemistry based on the spin multiplicity of the excited state, which leads to the observation of various spin-related photophysical properties and photochemical reactivities. Then, we focus on the recent advances in terms of light-induced magnetic properties, excited-state magneto-optical effects and spin-dependent photochemical reactions. The review aims to provide a comprehensive overview to utilize the spin multiplicity of the excited state in manipulating the above photophysical and photochemical processes. Finally, we discuss the existing challenges in the emerging field of spin photochemistry and future opportunities such as smart magnetic materials, optical information technology and spin-enhanced photocatalysis.

4.
J Am Chem Soc ; 146(32): 22583-22589, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102645

RESUMO

Circularly polarized (CP) lasers hold tremendous potential for advancing spin information communication and display technologies. Organic materials are emerging candidates for high-performance CP lasers because of their abundant chiral structures and excellent gain characteristics. However, their dissymmetry factor (glum) in CP emission is typically low due to the weak chiral light matter interactions. Here, we presented an effective approach to significantly amplifying glum by leveraging the intrinsic 2D-chiroptical response of an anisotropic organic supramolecular crystal. The organic complex microcrystal was designed to exhibit large 2D-chiroptical activities through strong coupling interactions between their remarkable linear birefringence (LB) and high degree of fluorescence linear polarization. Such 2D-chiroptical response can be further enhanced by the stimulated emission resulted from an increased degree of linear polarization, yielding a nearly pure CP laser with an exceptionally high glum of up to 1.78. Moreover, exploiting the extreme susceptibility of LB to temperature, we demonstrate a prototype of temperature-controlled chiroptical switches. These findings offer valuable insights for harnessing organic crystals to facilitate the development of high-performance CP lasers and other chiroptical devices.

5.
Analyst ; 149(14): 3732-3738, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38842499

RESUMO

Chiral recognition of enantiomers with identical mirror-symmetric molecular structures is important for the analysis of biomolecules, and it conventionally relies on stereoselective interactions in chiral chemical environments. Here, we develop a magneto-electrochemical method for the enhanced detection of chiral amino acids (AAs), that combines the advantages of the high sensitivity of electrochemiluminescent (ECL) biosensors and chirality-induced effects under a magnetic field. The ECL difference between L- and D-enantiomers can be amplified over 35-fold under a field of 3.5 kG, and the chiral discrimination can be achieved in dilute AA solutions down to the nM level. The field-dependent ECL and chronocoulometry measurements suggest that chiral AAs can lock the spins on their radicals and thus enlarge the ECL change under applied magnetic fields (magneto-ECL, MECL), which explains the field-enhanced chiral discrimination of AA enantiomers. Finally, a detailed protocol is demonstrated for the identification of unknown AA solutions, in which the species, chirality and concentration of AAs can be determined simultaneously from the 2D plots of the ECL and MECL results. This work benefits the development of field-assisted detection methods and represents a promising and universal strategy for the comprehensive analysis of chiral biomolecules.


Assuntos
Aminoácidos , Técnicas Eletroquímicas , Estereoisomerismo , Aminoácidos/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Técnicas Biossensoriais/métodos , Campos Magnéticos , Limite de Detecção
6.
J Phys Chem Lett ; 15(26): 6728-6735, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38905137

RESUMO

Conventional access and modulation of second-harmonic generation (SHG) require precise control of crystal orientation, which faces great mechanical challenges in the case of micro/nanocrystals. Here, we demonstrate the magnetic-field-tunable SHG performance of lanthanide coordination polymer (Ce-BTC CP) microcrystals through field-aligned orientations. The coordination of Ce ions and organic ligands constructs a noncentrosymmetric structure, which not only contributes to a favorable powder SHG efficiency 3.2 times larger than that of the benchmark KH2PO4 (KDP) but also endows the microcrystals with strong magnetic anisotropy. The SHG efficiency (∼0 to 10 × KDP) depends on the orientation of the crystallographic c-axis, whereas magnetic anisotropy always aligns the c-axis with the magnetic field at a specific angle. Accordingly, the SHG can be magnetically switched by field-induced alignments. The adsorption of dyes by Ce-BTC CPs further facilitates the magnetic switching of multicolor fluorescence that can be excited by the SHG. Our work provides a new pathway for achieving SHG modulation at the microscopic level.

7.
Angew Chem Int Ed Engl ; 63(37): e202408619, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38924245

RESUMO

Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.

8.
Angew Chem Int Ed Engl ; 63(29): e202405873, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709722

RESUMO

The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50 %. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.

9.
Angew Chem Int Ed Engl ; 63(23): e202402215, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581164

RESUMO

The development of a methodology for synthesizing value-added urea (CO(NH2)2) via a renewable electricity-driven C-N coupling reaction under mild conditions is highly anticipated. However, the complex catalytic active sites that act on the carbon and nitrogen species make the reaction mechanism unclear, resulting in a low efficiency of C-N coupling from the co-reduction of carbon dioxide (CO2) and nitrate (NO3 -). Herein, we propose a novel tandem catalyst of Mo-PCN-222(Co), in which the Mo sites serve to facilitate nitrate reduction to the *NH2 intermediate, while the Co sites enhance CO2 reduction to carbonic oxide (CO), thus synergistically promoting C-N coupling. The synthesized Mo-PCN-222(Co) catalyst exhibited a noteworthy urea yield rate of 844.11 mg h-1 g-1, alongside a corresponding Faradaic efficiency of 33.90 % at -0.4 V vs. reversible hydrogen electrode (RHE). By combining in situ spectroscopic techniques with density functional theory calculations, we demonstrate that efficient C-N coupling is attributed to a tandem system in which the *NH2 and *CO intermediates produced by the Mo and Co active sites of Mo-PCN-222(Co) stabilize the formation of the *CONH2 intermediate. This study provides an effective avenue for the design and synthesis of tandem catalysts for electrocatalytic urea synthesis.

10.
Chem Soc Rev ; 53(10): 5014-5053, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38600823

RESUMO

Alumina materials, as one of the cornerstones of the modern chemical industry, possess physical and chemical properties that include excellent mechanical strength and structure stability, which also make them highly suitable as catalyst supports. Alumina-supported Pd-based catalysts with the advantages of exceptional catalytic performance, flexible regulated surface metal/acid sites, and good regeneration ability have been widely used in many traditional chemical industry fields and have also shown great application prospects in emerging fields. This review aims to provide an overview of the recent advances in alumina and its supported Pd-based catalysts. Specifically, the synthesis strategies, morphology transformation mechanisms, and structural properties of alumina with various morphologies are comprehensively summarized and discussed in-depth. Then, the preparation approaches of Pd/Al2O3 catalysts (impregnation, precipitation, and other emerging methods), as well as the metal-support interactions (MSIs), are revisited. Moreover, Some promising applications have been chosen as representative reactions in fine chemicals, environmental purification, and sustainable development fields to highlight the universal functionality of the alumina-supported Pd-based catalysts. The role of the Pd species, alumina support, promoters, and metal-support interactions in the enhancement of catalytic performance are also discussed. Finally, some challenges and upcoming opportunities in the academic and industrial application of the alumina and its supported Pd-based are presented and put forward.

11.
Angew Chem Int Ed Engl ; 63(25): e202402882, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38594208

RESUMO

Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.

12.
Small ; 20(26): e2310226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38308112

RESUMO

Organic afterglow materials have significant applications in information security and flexible electronic devices with unique optical properties. It is vital but challenging to develop organic afterglow materials possessing controlled output with multi-stimuli-responsive capacity. Herein, dimethyl terephthalate (DTT) is introduced as a strong proton acceptor. The migration direction of N─H protons on two compounds Hs can be regulated by altering the excitation wavelength (Ex) or amine stimulation, thereby achieving dual-stimuli-responsive afterglow emission. When the Ex is below 300 nm, protons migrate to S1-2 DTT, where strong interactions induce phosphorescent emission of Hs, resulting in afterglow behavior. Conversely, when the Ex is above 300 nm, protons interact with the S0 DTT weakly and the afterglow disappears. In view of amine-based compounds with higher proton accepting capabilities, it can snatch proton from S1-2 DTT and redirect the proton flow toward amine, effectively suppressing the afterglow but obtaining a new redshifted fluorescence emission with Δλ over 200 nm due to the high polarity of amine. Moreover, it is successfully demonstrated that the applications of dual-stimuli-responsive organic afterglow materials in information encryption based on the systematic excitation-wavelength-dependent (Ex-De) behavior and amine selectivity detection.

13.
Angew Chem Int Ed Engl ; 63(12): e202400089, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38270907

RESUMO

Metal-organic phosphorescent complexes containing Ir or Pt are work horse in organic light-emitting diode (OLED) technology, which can harvest both singlet and triplet excitons in electroluminescence (EL) owing to strong heavy-atom effect. Recently, organic room-temperature phosphorescence (ORTP) have achieved high photoluminescence quantum yield (PLQY) in rigid crystalline state, which, however, is unsuitable for OLED fabrication, therefore leading to an EL efficiency far low behind those of metal-organic phosphorescent complexes. Here, we reported a luminescence mechanism switch from thermally activated delayed fluorescence (TADF) in single crystal microwires to ORTP in amorphous thin-films, based on a tert-butylcarbazole difluoroboron ß-diketonate derivative of DtCzBF2. Tightly packed and well-faceted single-crystal microwires exhibit aggregation induced emission (AIE), enabling TADF microlasers at 473 nm with an optical gain coefficient as high as 852 cm-1 . In contrast, loosely packed dimers of DtCzBF2 formed in guest-host amorphous thin-films decrease the oscillator strength of fluorescence transition but stabilize triplets for ORTP with a PLQY up to 61 %, leading to solution-processed OLEDs with EQE approaching 20 %. This study opens possibilities of low-cost ORTP emitters for high performance OLEDs and future low-threshold electrically injected organic semiconductor lasers (OSLs).

14.
Adv Mater ; 35(52): e2305260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37754067

RESUMO

Spin-polarized lasers, arising from stimulated emission of imbalanced spin populations, play a vital role in spin-optoelectronics. It is usually tackled by external spin injection, inevitably suffering from additional losses across the barriers from injection sources to gain materials. Herein, spin-polarized coherent light emission is self-triggered from the 1D-anchoring-3D perovskites, where the imbalanced populations in achiral 3D perovskites are endowed with the spin selectivity of exciton chirality (EC) underpinned by chiral 1D perovskites. Efficient transfer of EC is enabled by rapid energy transfer, thereby creating an imbalance of the spin population of excited states. Stimulated emission of such populations brings self-triggered spin-polarized amplified spontaneous emission in the composite perovskites, yielding a higher degree of polarization (DOP) than that based on optical spin injection into bare achiral 3D perovskites. Chemical diversity of composite perovskites not only enables to adjust band gap for broadband output of spin-polarized light signals but also promises to manipulate radiative decay and spin relaxation toward remarkably increased DOP. These results highlight the importance of EC transfer mechanism for spin-polarized lasing and represent a crucial step toward the development of chiral-spintronics.

15.
Angew Chem Int Ed Engl ; 62(40): e202309386, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37587321

RESUMO

Stimulated Raman scattering offers an alternative strategy to explore continuous-wave (c.w.) organic lasers, which, however, still suffers from the limitation of inadequate Raman gain in organic material systems. Here we propose a metal-linking approach to enhance the Raman gain of organic molecules. Self-assembled microcrystals of the metal linked organic dimers exhibit large Raman gain, therefore allowing for c.w. Raman lasing. Furthermore, broadband tunable Raman lasing is achieved in the organic dimer microcrystals by adjusting excitation wavelengths. This work advances the understanding of Raman gain in organic molecules, paving a way for the design of c.w. organic lasers.

16.
Sci Adv ; 9(33): eadi0214, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585530

RESUMO

Probing atomic clusters with magic numbers is of supreme importance but challenging in cluster science. Pronounced stability of a metal cluster often arises from coincident geometric and electronic shell closures. However, transition metal clusters do not simply abide by this constraint. Here, we report the finding of a magic-number cluster Rh19- with prominent inertness in the sufficient gas-collision reactions. Photoelectron spectroscopy experiments and global-minimum structure search have determined the geometry of Rh19- to be a regular Oh­[Rh@Rh12@Rh6]- with unusual high-spin electronic configuration. The distinct stability of such a strongly magnetic cluster Rh19- consisting of a nonmagnetic element is fully unveiled on the basis of its unique bonding nature and superatomic states. The 1-nanometer-sized Oh-Rh19- cluster corresponds to a fragment of the face-centered cubic lattice of bulk rhodium but with altered magnetism and electronic property. This cluster features exceptional electron-spin state isomers confirmed in photoelectron spectra and suggests potential applications in atomically precise manufacturing involving spintronics and quantum computing.

17.
Chem Sci ; 14(33): 8723-8742, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37621424

RESUMO

Hierarchical self-assembly of organic molecules or assemblies is of great importance for organic photonics to move from fundamental research to integrated and practical applications. Magnetic fields with the advantages of high controllability, non-contact manipulation, and instantaneous response have emerged as an elegant way to prepare organic hierarchical nanostructures. In this perspective, we outline the development history of organic photonic materials and highlight the importance of organic hierarchical nanostructures for a wide range of applications, including microlasers, optical displays, information encoding, sensing, and beyond. Then, we will discuss recent advances in magnetically controlled assembly for creating organic hierarchical nanostructures, with a particular focus on their potential for enabling the development of integrated photonic devices with unprecedented functionality and performance. Finally, we present several perspectives on the further development of magnetically controlled assembly strategies from the perspective of performance optimization and functional design of organic integrated photonics.

18.
Angew Chem Int Ed Engl ; 62(35): e202309073, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37427886

RESUMO

Macroscopic compass-like magnetic alignment at low magnetic fields is natural for ferromagnetic materials but is seldomly observed in paramagnetic materials. Herein, we report a "paramagnetic compass" that magnetically aligns under ∼mT fields based on the single-crystalline framework constructed by lanthanide ions and organic ligands (Ln-MOF). The magnetic alignment is attributed to the Ln-MOF's strong macroscopic anisotropy, where the highly-ordered structure allows the Ln-ions' molecular anisotropy to be summed according to the crystal symmetry. In tetragonal Ln-MOFs, the alignment is either parallel or perpendicular to the field depending on the easiest axis of the molecular anisotropy. Reversible switching between the two alignments is realized upon the removal and re-adsorption of solvent molecules filled in the framework. When the crystal symmetry is lowered in monoclinic Ln-MOFs, the alignments become even inclined (47°-66°) to the field. These fascinating properties of Ln-MOFs would encourage further explorations of framework materials containing paramagnetic centers.

19.
J Am Chem Soc ; 145(24): 13392-13399, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37289031

RESUMO

The design and construction of organic afterglow materials is an attractive but formidably challenging task due to the low intersystem crossing efficiency and nonradiative decay. Here, we developed a host surface-induced strategy to achieve excitation wavelength-dependent (Ex-De) afterglow emission through a facile dropping process. The prepared PCz@dimethyl terephthalate (DTT)@paper system exhibits a room-temperature phosphorescence afterglow, with the lifetime up to 1077.1 ± 15 ms and duration time exceeding 6 s under ambient conditions. Furthermore, we can switch the afterglow emission on and off by adjusting the excitation wavelength below or above 300 nm, showing a remarkable Ex-De behavior. Spectral analysis demonstrated that the afterglow originates from the phosphorescence of PCz@DTT assemblies. The stepwise preparation process and detailed experiments (XRD, 1H NMR, and FT-IR analysis) proved the presence of strong intermolecular interactions between the carbonyl groups on the surface of DTT and the entire frame of PCz, which can inhibit the nonradiative processes of PCz to achieve afterglow emission. Theoretical calculations further manifested that DTT geometry alteration under different excitation beams is the main reason for the Ex-De afterglow. This work discloses an effective strategy for constructing smart Ex-De afterglow systems that can be fully exploited in a range of fields.

20.
Nanomicro Lett ; 15(1): 158, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341868

RESUMO

The catalytic activities are generally believed to be relevant to the electronic states of their active center, but understanding this relationship is usually difficult. Here, we design two types of catalysts for electrocatalytic urea via a coordination strategy in a metal-organic frameworks: CuIII-HHTP and CuII-HHTP. CuIII-HHTP exhibits an improved urea production rate of 7.78 mmol h-1 g-1 and an enhanced Faradaic efficiency of 23.09% at - 0.6 V vs. reversible hydrogen electrode, in sharp contrast to CuII-HHTP. Isolated CuIII species with S = 0 spin ground state are demonstrated as the active center in CuIII-HHTP, different from CuII with S = 1/2 in CuII-HHTP. We further demonstrate that isolated CuIII with an empty [Formula: see text] orbital in CuIII-HHTP experiences a single-electron migration path with a lower energy barrier in the C-N coupling process, while CuII with a single-spin state ([Formula: see text]) in CuII-HHTP undergoes a two-electron migration pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA