Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2303455120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722054

RESUMO

Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Bovinos , Anticorpos , Fragmentos Fab das Imunoglobulinas/genética , Dissulfetos
2.
Front Vet Sci ; 10: 1208275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404778

RESUMO

Introduction: African swine fever virus (ASFV) is a pathogen of great economic importance given that continues to threaten the pork industry worldwide, but there is no safe vaccine or treatment available. Development of a vaccine is feasible as immunization of pigs with some live attenuated ASFV vaccine candidates can confer protection, but safety concerns and virus scalability are challenges that must to be addressed. Identification of protective ASFV antigens is needed to inform the development of efficacious subunit vaccines. Methods: In this study, replication-incompetent adenovirus-vectored multicistronic ASFV antigen expression constructs that covered nearly 100% of the ASFV proteome were generated and validated using ASFV convalescent serum. Swine were immunized with a cocktail of the expression constructs, designated Ad5-ASFV, alone or formulated with either Montanide ISA-201™ (ASFV-ISA-201) or BioMize® adjuvant (ASFV-BioMize). Results: These constructs primed strong B cell responses as judged by anti-pp62-specific IgG responses. Notably, the Ad5-ASFV and the Ad5-ASFV ISA-201, but not the Ad5-ASFV BioMize®, immunogens primed significantly (p < 0.0001) higher anti-pp62-specific IgG responses compared with Ad5-Luciferase formulated with Montanide ISA-201™ adjuvant (Luc-ISA-201). The anti-pp62-specific IgG responses underwent significant (p < 0.0001) recall in all the vaccinees after boosting and the induced antibodies strongly recognized ASFV (Georgia 2007/1)-infected primary swine cells. However, following challenge by contact spreaders, only one pig nearly immunized with the Ad5-ASFV cocktail survived. The survivor had no typical clinical symptoms, but had viral loads and lesions consistent with chronic ASF. Discussion: Besides the limited sample size used, the outcome suggests that in vivo antigen expression, but not the antigen content, might be the limitation of this immunization approach as the replication-incompetent adenovirus does not amplify in vivo to effectively prime and expand protective immunity or directly mimic the gene transcription mechanisms of attenuated ASFV. Addressing the in vivo antigen delivery limitations may yield promising outcomes.

3.
Toxics ; 11(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37112569

RESUMO

Frequent sprays on cotton prompted resistance development in the tarnished plant bug (TPB). Knowledge of global gene regulation is highly desirable to better understand resistance mechanisms and develop molecular tools for monitoring and managing resistance. Novel microarray expressions of 6688 genes showed 3080 significantly up- or down-regulated genes in permethrin-treated TPBs. Among the 1543 up-regulated genes, 255 code for 39 different enzymes, and 15 of these participate in important pathways and metabolic detoxification. Oxidase is the most abundant and over-expressed enzyme. Others included dehydrogenases, synthases, reductases, and transferases. Pathway analysis revealed several oxidative phosphorylations associated with 37 oxidases and 23 reductases. One glutathione-S-transferase (GST LL_2285) participated in three pathways, including drug and xenobiotics metabolisms and pesticide detoxification. Therefore, a novel resistance mechanism of over-expressions of oxidases, along with a GST gene, was revealed in permethrin-treated TPB. Reductases, dehydrogenases, and others may also indirectly contribute to permethrin detoxification, while two common detoxification enzymes, P450 and esterase, played less role in the degradation of permethrin since none was associated with the detoxification pathway. Another potential novel finding from this study and our previous studies confirmed multiple/cross resistances in the same TPB population with a particular set of genes for different insecticide classes.

4.
Pest Manag Sci ; 79(5): 1731-1742, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36617731

RESUMO

BACKGROUND: Clathrin-dependent endocytosis is a vesicular transport process by which cells take macromolecules from the extracellular space to the intracellular space. It plays important roles in various cellular functions, but its biological significance in insect development and reproduction has not been well studied. RESULTS: We characterized and functionally analyzed four major clathrin-dependent endocytic pathway genes (TcChc, TcAP50, TcVhaSFD, TcRab7) in Tribolium castaneum. RNA interference (RNAi) by injecting double-stranded RNA (dsRNA) targeting each gene at three doses (50, 100, or 200 ng per insect) in 20-day-old larvae led to 100% larval mortality. When the expressions of TcChc, TcVhaSFD, and TcRab7 were suppressed by injecting their respective dsRNAs at each dose in 1-day-old pupae, the adults that emerged from the dsRNA-injected pupae were deformed, with the absence of wing development. The deformed adults died within 2 days after eclosion. When the expression of TcAP50 was suppressed by injecting its dsRNA into 1-day-old pupae, although no apparent deformed adults were observed, all the adults died within 35 days after eclosion. In addition, when the expressions of TcChc and TcVhaSFD were suppressed by injecting their respective dsRNAs at a reduced dose (10 ng per insect) in 5-day-old pupae, the ovarian development and oocyte production in the resultant females were completely inhibited. CONCLUSION: Our results indicate that clathrin-dependent endocytosis is essential for insect development and reproduction. The results from this study can help researchers identify potential molecular targets for developing novel strategies for insect pest management. © 2023 Society of Chemical Industry.


Assuntos
Besouros , Tribolium , Animais , Feminino , Besouros/genética , Larva , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Endocitose , Clatrina/genética , Clatrina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
5.
Environ Pollut ; 292(Pt A): 118212, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582921

RESUMO

Varroa mite is one of the major adverse factors causing honey bee population decline. In this study, Varroa destructor-infested and uninfested honey bee colonies were established by selective applying miticide (Apivar® amitraz). Mite population was monitored monthly (April-October 2016), and deformed wing virus (DWV) loading was detected seasonally (April, July, and October). Four immunity- and two physiology-related gene expressions, natural mortality, and susceptibility to five insecticides were comparatively and seasonally examined in field-collected honey bee workers. Results showed that Apivar-treated bee colonies had minor or undetectable mite and DWV (using RT-qPCR) infestations in whole bee season, while untreated colonies had substantially higher mite and DWV infestations. In untreated colonies, Varroa mite population irregularly fluctuated over the bee season with higher mite counts in Jun (318 ± 89 mites dropped in 48 h) or August (302) than that (25 ± 4 or 34) in October, and mite population density was not dynamically or closely correlated with the seasonal shift of honey bee natural mortality (regression slope = -0.5212). Unlike mite, DWV titer in untreated colonies progressively increased over the bee season, and it was highly correlated (R2 = 1) with the seasonal increase of honey bee natural mortality. Significantly lower gene expressions of dor, PPO, mfe, potentially PPOa and eat as well, in untreated colonies also indicated an association of increased DWV infestation with decreased physiological and immunity-related functions in late-season honey bees. Furthermore, bees with lower mite/DWV infestations exhibited generally consistently lower susceptibilities (contact and oral toxicities) to five representative insecticides than the bees without Apivar treatment. All of these data from this study consistently indicated an interaction of Varroa/viral infestations with insecticide susceptibilities in honey bees, potentially through impairing bee's physiology and immunity, emphasizing the importance of mite control in order to minimize honey bee decline.


Assuntos
Acaricidas , Inseticidas , Vírus de RNA , Varroidae , Acaricidas/toxicidade , Animais , Abelhas , Inseticidas/toxicidade
6.
Ecotoxicol Environ Saf ; 223: 112563, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343900

RESUMO

Although many toxicological evaluations have been conducted for honey bees (Apis mellifera), most of these studies have only focused on the effects of individual chemicals. However, honey bees are usually exposed to pesticide mixtures under field conditions. In this study, we examined the effects of individual pesticides and mixtures of clothianidin (CLO) with eight other pesticides [carbaryl (CAR), thiodicarb (THI), chlorpyrifos (CHL), beta-cyfluthrin (BCY), gamma-cyhalothrin (GCY), tetraconazole (TET), spinosad (SPI) and indoxacarb (IND)] on honey bees using a feeding method. Toxicity tests of a 4-day exposure to individual pesticides revealed that CLO had the highest toxicity to A. mellifera, with an LC50 value of 0.24 µg a.i. mL-1, followed by IND and CHL with LC50 values of 3.40 and 3.56 µg a.i. mL-1, respectively. SPI and CAR had relatively low toxicities, with LC50 values of 7.19 and 8.42 µg a.i. mL-1, respectively. In contrast, TET exhibited the least toxicity, with an LC50 value of 258.7 µg a.i. mL-1. Most binary mixtures of CLO with other pesticides exerted additive and antagonistic effects. However, all the ternary mixtures containing CLO and TET (except for CLO+TET+THD) elicited synergistic responses to bees. Either increased numbers of components in the mixture or/and a unique mode of action appeared to be responsible for the higher toxicity of mixtures. Our findings emphasized the need for risk assessment of pesticide mixtures rather than the individual chemicals. Our data also provided information that might help growers avoid increased toxicity and unnecessary injury to pollinators.


Assuntos
Inseticidas , Praguicidas , Animais , Abelhas , Guanidinas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Praguicidas/toxicidade , Tiazóis
7.
J Immunol ; 206(8): 1709-1718, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33762324

RESUMO

Studies of immune responses elicited by bovine viral diarrhea virus (BVDV) vaccines have primarily focused on the characterization of neutralizing B cell and CD4+ T cell epitopes. Despite the availability of commercial vaccines for decades, BVDV prevalence in cattle has remained largely unaffected. There is limited knowledge regarding the role of BVDV-specific CD8+ T cells in immune protection, and indirect evidence suggests that they play a crucial role during BVDV infection. In this study, the presence of BVDV-specific CD8+ T cells that are highly cross-reactive in cattle was demonstrated. Most importantly, novel potent IFN-γ-inducing CD8+ T cell epitopes were identified from different regions of BVDV polyprotein. Eight CD8+ T cell epitopes were identified from the following structural BVDV Ags: Erns, E1, and E2 glycoproteins. In addition, from nonstructural BVDV Ags Npro, NS2-3, NS4A-B, and NS5A-B, 20 CD8+ T cell epitopes were identified. The majority of these IFN-γ-inducing CD8+ T cell epitopes were found to be highly conserved among more than 200 strains from BVDV-1 and -2 genotypes. These conserved epitopes were also validated as cross-reactive because they induced high recall IFN-γ+CD8+ T cell responses ex vivo in purified bovine CD8+ T cells isolated from BVDV-1- and -2-immunized cattle. Altogether, 28 bovine MHC class I-binding epitopes were identified from key BVDV Ags that can elicit broadly reactive CD8+ T cells against diverse BVDV strains. The data presented in this study will lay the groundwork for the development of a contemporary CD8+ T cell-based BVDV vaccine capable of addressing BVDV heterogeneity more effectively than current vaccines.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Diarreia Viral Bovina/fisiologia , Epitopos de Linfócito T/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/imunologia , Animais , Bovinos , Células Cultivadas , Sequência Conservada/genética , Reações Cruzadas , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferon gama/metabolismo , Ligação Proteica , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética
8.
Front Immunol ; 11: 589537, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281819

RESUMO

Bovine Viral Diarrhea Virus (BVDV) is an important pathogen that plays a significant role in initiating Bovine Respiratory Disease Complex (BRDC) in cattle. The disease causes multi-billion dollar losses globally due to high calf mortality and increased morbidity leading to heavy use of antibiotics. Current commercial vaccines provide limited cross-protection with several drawbacks such as safety, immunosuppression, potential reversion to virulence, and induction of neonatal pancytopenia. This study evaluates two prototype vaccines containing multiple rationally designed recombinant mosaic BVDV antigens for their potential to confer cross-protection against diverse BVDV strains. Genes encoding three novel mosaic antigens, designated E2123, NS2-31, and NS2-32, were designed in silico and expressed in mammalian cells for the formulation of a prototype protein-based vaccine. The mosaic antigens contain highly conserved protective epitopes from BVDV-1a, -1b, and -2, and included unique neutralizing epitopes from disparate strains to broaden coverage. We tested immunogenicity and protective efficacy of Expi293TM-expressed mosaic antigens (293F-E2123, 293F-NS2-31, and 293F-NS2-32), and baculovirus-expressed E2123 (Bac-E2123) mosaic antigen in calves. The Expi293TM-expressed antigen cocktail induced robust BVDV-specific cross-reactive IFN-γ responses, broadly neutralizing antibodies, and following challenge with a BVDV-1b strain, the calves had significantly (p < 0.05) reduced viremia and clinical BVD disease compared to the calves vaccinated with a commercial killed vaccine. The Bac-E2123 antigen was not as effective as the Expi293TM-expressed antigen cocktail, but it protected calves from BVD disease better than the commercial killed vaccine. The findings support feasibility for development of a broadly protective subunit BVDV vaccine for safe and effective management of BRD.


Assuntos
Antígenos Virais/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/terapia , Bovinos/imunologia , Vírus da Diarreia Viral Bovina/imunologia , Vacinas Virais/administração & dosagem , Animais , Antígenos Virais/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Epitopos/imunologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-32777468

RESUMO

Honey bee is an economically important insect for honey production and pollination. Frequent exposure to toxic pesticides is one of the major risk factors causing the pollinator population decline. However, age effects of honey bees on pesticide susceptibility have been largely ignored and many researchers use bees of unknown age for assessing the risk of pesticides. Honey bee workers are known to go through physiological and behavioral changes in order to differentiate different phenotypes to perform specific duties over their natural lifetime of 6 weeks or longer. In this study, we provide multi-parameter evidences of unignorable age effects of honey bee workers and suggest using a standard bee age to produce reliable and comparable data when assessing variable and realistic situations of in-hive and field exposures to pesticides. Using honey bee workers aged 4- to 42-days old, we examined susceptibility of the bees to five different insecticides from five different classes and measured enzymatic activities of three major detoxification enzymes and an invertase involved in honey production. Results showed gradual increase of natural mortality and decrease of soluble protein content in bees over the age span from 4 days to 42 days. Significant increases of mortality after separate treatments of five different insecticides confirmed drastic age effects of bees over the assessed age span. As they aged, honey bees also showed a gradual increase of cytochrome P450 oxidase activity while still maintaining constant levels of two other detoxification enzymes (esterase and glutathione S-transferase) and an invertase responsible for honey production.


Assuntos
Abelhas/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Esterases/metabolismo , Glutationa Transferase/metabolismo , Inseticidas/farmacologia , beta-Frutofuranosidase/metabolismo , Fatores Etários , Animais , Resistência a Inseticidas
10.
Pathogens ; 9(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121082

RESUMO

: African swine fever (ASF) is a viral disease of domestic and wild suids for which there is currently no vaccine or treatment available. The recent spread of ASF virus (ASFV) through Europe and Asia is causing enormous economic and animal losses. Unfortunately, the measures taken so far are insufficient and an effective vaccine against ASFV needs to be urgently developed. We hypothesized that immunization with a cocktail of thirty-five rationally selected antigens would improve the protective efficacy of subunit vaccine prototypes given that the combination of fewer immunogenic antigens (between 2 and 22) has failed to elicit protective efficacy. To this end, immunogenicity and efficacy of thirty-five adenovirus-vectored ASFV antigens were evaluated in wild boar. The treated animals were divided into different groups to test the use of BioMize adjuvant and different inoculation strategies. Forty-eight days after priming, the nine treated and two control wild boar were challenged with the virulent ASFV Arm07 isolate. All animals showed clinical signs and pathological findings consistent with ASF. This lack of protection is in line with other studies with subunit vaccine prototypes, demonstrating that there is still much room for improvement to obtain an effective subunit ASFV vaccine.

11.
J Virol Methods ; 270: 153-162, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132371

RESUMO

The corn planthopper, Peregrinus maidis, not only causes direct damage to plants by feeding, but also transmits maize mosaic virus (MMV) to the plant hosts. The virus is transmitted in a propagative manner but the acquisition of MMV by the vector feeding on infected plants can result in low acquisition and inoculation efficiency. Here, we increased the acquisition efficiency by delivering the virus directly into the hemocoel through microinjection, which resulted in efficient virus infection of the insect and transmission to maize. We found that delivery of virus by injection of 10 ng MMV (50 nl, 200 µg/ml virions) into P. maidis resulted in 93% transmission efficiency. In dose-response experiments, MMV abundance in insects and transmission efficiency decreased as the amount of virus inoculum delivered into the hemocoel was reduced. Examination of virus distribution in the vector using immunolabeling and confocal microscopy revealed similar tissue distributions in the injected insects when compared to those of previous studies using feeding on plants for virus acquisition. The utility of virus inoculation by microinjection for functional analysis in virus-vector interaction was explored. Co-microinjection of MMV virions and the dsRNA of PI3Kδ (a transcript that is less abundant in MMV-infected insects), resulted in a reduction in PI3Kδ expression and higher virus titers in P. maidis. These findings demonstrated that virus microinjection is a robust method for obtaining large numbers of infected planthoppers that are competent in transmitting MMV and, in combination with RNAi, could significantly facilitate the functional analysis of P. maidis-MMV interactions.


Assuntos
Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Rhabdoviridae/fisiologia , Animais , Feminino , Hemípteros/crescimento & desenvolvimento , Microinjeções , Ninfa/virologia , Interferência de RNA , Zea mays/virologia
12.
Plant Dis ; 102(10): 2009-2015, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30133358

RESUMO

'Candidatus Liberibacter solanacearum' is a plant pathogen associated with diseases affecting several crops of the Solanaceae and Apiaceae families. Two 'Ca. L. solanacearum' haplotypes (LsoA and LsoB) infect solanaceous crops in North America and are transmitted by the tomato psyllid Bactericera cockerelli. Although both 'Ca. L. solanacearum' haplotypes cause zebra chip in potato, the diseases associated with each haplotype in tomato (Solanum lycopersicum) have not been described. 'Ca. L. solanacearum'-infected tomato plants exhibit symptoms resembling those of permanent yellowing disease (known in Mexico as "permanente del tomate") and sometimes called psyllid yellows. In this study, the symptoms associated with each 'Ca. L. solanacearum' haplotype in tomato were compared, and the bacterial abundance in different nodes of the plants was measured by quantitative polymerase chain reaction. Surprisingly, both plant phenotype and bacterium distribution were different between LsoA- and LsoB-infected plants. Plants infected with LsoB died prematurely, whereas those infected with LsoA did not. Across the measured time points, LsoB abundance in infected plants was consistent with previous reports describing a sink to source gradient, while such gradient was only observed in LsoA-infected plants early after infection. This is the first report describing the differences in symptoms in tomato associated with two 'Ca. L. solanacearum' haplotypes, LsoA and LsoB.


Assuntos
Rhizobiaceae/genética , Solanum lycopersicum/microbiologia , DNA Bacteriano/genética , Haplótipos , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Fatores de Tempo
13.
J Econ Entomol ; 111(4): 1517-1525, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29889221

RESUMO

The widespread use of neonicotinoid insecticides has sparked concern over the toxicity risk to honey bees (Apis mellifera L. (Hymenoptera: Apidae)). In this study, feeding treatments with the clothianidin formulation at 2.6 ppb (residue concentration) or its binary mixtures with five representative pesticides (classes) did not influence on adult survivorship, but all treatments caused significantly lower body weight than controls. Most binary mixtures at residue levels showed minor or no interaction on body weight loss, and synergistic interaction was detected only from the mixture of clothianidin + λ-cyhalothrin. Chlorpyrifos alone and the mixture of clothianidin + chlorpyrifos significantly suppressed esterase (EST) activity, while most treatments of individual pesticides and mixtures had no effect on EST and glutathione S-transferase (GST) activities. However, ingestion of clothianidin at 2.6 ppb significantly enhanced P450 oxidase activity by 19%. The LC50 of formulated clothianidin was estimated at 0.53 ppm active ingredient, which is equivalent to 25.4 ng clothianidin per bee (LD50) based on the average sugar consumption of 24 µl per bee per day. In addition to mortality, ingestion of clothianidin at LC50 significantly reduced bee body weight by 12%. P450 activities were also significantly induced at 24 and 48 h in clothianidin-treated bees, while no significant difference was found in GST and EST activities. Further examinations revealed that the expression of an important CYP9q1 detoxification gene was significantly induced by clothianidin. Thus, data consistently indicated that P450s were involved in clothianidin detoxification in honey bees. Although the honey bee population in Stoneville (MS, United States) had sixfold lower susceptibility than other reported populations, clothianidin had very high oral toxicity to bees.


Assuntos
Guanidinas , Inseticidas , Animais , Abelhas , Neonicotinoides , Tiazóis
14.
Artigo em Inglês | MEDLINE | ID: mdl-29563044

RESUMO

Acephate (organophosphate) is frequently used to control piercing/sucking insects in field crops in southern United States, which may pose a risk to honey bees. In this study, toxicity of acephate (formulation Bracket®97) was examined in honey bees through feeding treatments with sublethal (pollen residue level: 0.168 mg/L) and median-lethal (LC50: 6.97 mg/L) concentrations. Results indicated that adult bees treated with acephate at residue concentration did not show significant increase in mortality, but esterase activity was significantly suppressed. Similarly, bees treated with binary mixtures of acephate with six formulated pesticides (all at residue dose) consistently showed lower esterase activity and body weight. Clothianidin, λ-cyhalothrin, oxamyl, tetraconazole, and chlorpyrifos may interact with acephate significantly to reduce body weight in treated bees. The dose response data (LC50: 6.97 mg/L) revealed a relatively higher tolerance to acephate in Stoneville bee population (USA) than populations elsewhere, although in general the population is still very sensitive to the organophosphate. In addition to killing 50% of the treated bees acephate (6.97 mg/L) inhibited 79.9%, 20.4%, and 29.4% of esterase, Glutathione S-transferase (GST), and acetylcholinesterase (AChE) activities, respectively, in survivors after feeding treatment for 48 h. However, P450 activity was elevated 20% in bees exposed to acephate for 48 h. Even though feeding on sublethal acephate did not kill honey bees directly, chronic toxicity to honey bee was noticeable in body weight loss and esterase suppression, and its potential risk of synergistic interactions with other formulated pesticides should not be ignored.


Assuntos
Abelhas/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inseticidas/toxicidade , Intestinos/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Praguicidas/toxicidade , Fosforamidas/toxicidade , Tórax/efeitos dos fármacos , Acetilcolinesterase/química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Administração Oral , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/metabolismo , Indutores das Enzimas do Citocromo P-450/administração & dosagem , Indutores das Enzimas do Citocromo P-450/toxicidade , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sinergismo Farmacológico , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Insetos/agonistas , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/administração & dosagem , Mucosa Intestinal/metabolismo , Intestinos/enzimologia , Mississippi , Compostos Organotiofosforados/administração & dosagem , Concentração Osmolar , Resíduos de Praguicidas/toxicidade , Fosforamidas/administração & dosagem , Análise de Sobrevida , Tórax/enzimologia , Tórax/metabolismo , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Redução de Peso/efeitos dos fármacos
15.
Chemosphere ; 194: 745-754, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247934

RESUMO

We developed a high-resolution expression microarray based on 2456 unique transcripts from a cDNA library of the aquatic midge (Chironomus tentans). By using the microarray, we detected that 146, 434 and 243 genes were differentially expressed after C. tentans larvae were exposed to chlorpyrifos (organophosphate insecticide) at 0.1 and 0.5 µg/L, and atrazine (triazine herbicide) at 1000 µg/L, respectively, for 48 h. The number of differentially expressed genes in the larvae exposed to chlorpyrifos at 0.5 µg/L was three times of that in the larvae exposed to chlorpyrifos at 0.1 µg/L. Among the differentially expressed genes in response to chlorpyrifos exposures, 76 genes showed significant Blast hits, and among them 42 were in common between the chlorpyrifos and atrazine exposures. In 19 differentially expressed xenobiotic detoxification genes, 16 were significantly up-regulated in the larvae exposed to chlorpyrifos and/or atrazine. Two cytochrome P450 genes (CtCYP6EV1 and CtCYP4DG2) were specifically up-regulated by chlorpyrifos, whereas three cytochrome P450 genes (CtCYP4DG1, CtCYP6EX3 and CtCYP6EV3) were specifically up-regulated by atrazine. Our results showed that chlorpyrifos exposures even at low concentrations can lead to significant changes in gene expression. The significant transcriptional responses are likely attributed to larval intoxication by the insecticide. These results not only support our previous studies in which candidate gene approaches were used, but also can potentially help develop specific molecular markers for monitoring pesticide exposures in non-target organisms in aquatic systems.


Assuntos
Chironomidae/genética , Larva/genética , Praguicidas/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Atrazina/farmacologia , Clorpirifos/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Herbicidas/metabolismo , Inseticidas/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Praguicidas/metabolismo , Regulação para Cima/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia
16.
Chemosphere ; 186: 68-77, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28768160

RESUMO

The open reading frames of 19 cytochrome P450 monooxygenase (CYP) genes were sequenced from Chironomus tentans, a commonly used freshwater invertebrate model. Phylogenetic analysis of the 19 CYPs along with a previously reported CYP (CtCYP4G33) revealed that they belong to three different clans, including 3 in CYP4, 15 in CYP3, and 2 in mitochondria clan. When third-instar larvae were exposed to atrazine at 5000 µg/L, the transcription of CtCYP6EX3, CtCYP6EV3, CtCYP9AT1 and CtCYPEX1 was significantly up-regulated. To examine whether CtCYP6EX3 played a role in oxidative activation of chlorpyrifos to chlorpyrifos-oxon, we evaluated larval susceptibility to chlorpyrifos after CtCYP6EX3 transcript was suppressed by RNAi. The larvae fed chitosan/dsCtCYP6EX3 nanoparticles showed a significantly decreased CtCYP6EX3 transcript (53.1%) as compared with the control larvae fed chitosan/dsGFP nanoparticles. When the CtCYP6EX3-silenced larvae were exposed to chlorpyrifos at 6 µg/L or its binary mixture with atrazine (chlorpyrifos at 3 µg/L and atrazine at 1000 µg/L), the larvae became less susceptible to the pesticides as their mortalities decreased by 24.1% and 20.5%, respectively. These results along with our previous findings suggested that the increased toxicity of chlorpyrifos was likely due to an enhanced oxidative process from chlorpyrifos to chlorpyrifos-oxon by CtCYP6EX3 as RNAi of CtCYP6EX3 led to decreased susceptibility of C. tentans larvae to chlorpyrifos alone and the binary mixture of atrazine and chlorpyrifos. However, further study would be necessary to validate our results by functional assays using heterologously expressed CtCYP6EX3 enzyme.


Assuntos
Atrazina/toxicidade , Chironomidae/metabolismo , Clorpirifos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Chironomidae/enzimologia , Clorpirifos/análogos & derivados , Família 6 do Citocromo P450/efeitos dos fármacos , Família 6 do Citocromo P450/metabolismo , Inseticidas/toxicidade , Larva/metabolismo , Regulação para Cima/efeitos dos fármacos
17.
PLoS One ; 12(6): e0178421, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591204

RESUMO

Imidacloprid is the most widely used insecticide in agriculture. In this study, we used feeding methods to simulate in-hive exposures of formulated imidacloprid (Advise® 2FL) alone and mixtures with six representative pesticides for different classes. Advise, fed at 4.3 mg/L (equal to maximal residue detection of 912 ppb active ingredient [a.i.] in pollen) induced 36% mortality and 56% feeding suppression after 2-week feeding. Treatments with individual Bracket (acephate), Karate (λ-cyhalothrin), Vydate (oxamyl), Domark (tetraconazole), and Roundup (glyphosate) at residue level had a mortality range of 1.3-13.3%, statistically similar to that of control (P>0.05). The additive/synergistic toxicity was not detected from binary mixtures of Advise with different classes of pesticides at residue levels. The feeding of the mixture of all seven pesticides increased mortality to 53%, significantly higher than Advise only but still without synergism. Enzymatic data showed that activities of invertase, glutathione S-transferase, and acetylcholinesterase activities in imidacloprid-treated survivors were mostly similar to those found in control. Esterase activity mostly increased, but was significantly suppressed by Bracket (acephate). The immunity-related phenoloxidase activity in imidacloprid-treated survivors tended to be lower, but most treatments were statistically similar to the control. Increase of cytochrome P450 activity was correlated with Advise concentrations and reached significant difference at 56 mg/L (12 ppm a.i.). Our data demonstrated that residue levels of seven pesticide in pollens/hive may not adversely affect honey bees, but long term exclusive ingestion of the maximal residue levels of imidacloprid (912 ppb) and sulfoxaflor (3 ppm a.i.) may induce substantial bee mortality. Rotating with other insecticides is a necessary and practical way to reduce the residue level of any given pesticide.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Imidazóis/toxicidade , Nitrocompostos/toxicidade , Resíduos de Praguicidas/toxicidade , Praguicidas/toxicidade , Animais , Antifúngicos/farmacologia , Abelhas/enzimologia , Abelhas/imunologia , Peso Corporal/efeitos dos fármacos , Herbicidas/toxicidade , Inseticidas/toxicidade , Neonicotinoides
18.
PLoS One ; 12(5): e0176837, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467462

RESUMO

Imidacloprid is the most widely used insecticide in the world. In this study, we used spraying methods to simulate field exposures of bees to formulated imidacloprid (Advise® 2FL) alone and binary mixtures with seven pesticides from different classes. Synergistic toxicity was detected from mixtures of Advise (58.6 mg a.i./L imidacloprid)+Domark (512.5 mg a.i. /L tetraconazole), Advise+Transform (58.5 mg a.i./L sulfoxaflor), and Advise+Vydate (68 mg a.i./L oxamyl), and mortality was significantly increased by 20%, 15%, and 26% respectively. The mixtures of Advise+Bracket (88.3 mg a.i./L acephate) and Advise+Karate (62.2 mg a.i./L L-cyhalothrin) showed additive interaction, while Advise+Belay (9.4 mg a.i./L clothianidin) and Advise+Roundup (1217.5 mg a.i./L glyphosate) had no additive/synergistic interaction. Spraying bees with the mixture of all eight pesticides increased mortality to 100%, significantly higher than all other treatments. Except Bracket which significantly suppressed esterase and acetylcholinesterase (AChE) activities, other treatments of Advise-only and mixtures with other pesticides did not suppress enzyme activities significantly, including invertase, glutathione S-transferase (GST), and esterase and AChE. Immunity-related phenoloxidase (PO) activities in survivors tended to be more variable among treatments, but mostly still statistically similar to the control. By using specific enzyme inhibitors, we demonstrated that honey bees mainly rely on cytochrome P450 monooxygenases (P450s) for detoxifying Advise, while esterases and GSTs play substantially less roles in the detoxification. This study provided valuable information for guiding pesticide selection in premixing and tank mixing in order to alleviate toxicity risk to honey bees. Our findings indicated mixtures of Advise with detoxification-enzyme-inducing pesticides may help bees to detoxify Advise, while toxicity synergists may pose further risk to bees, such as the Bracket which not only suppressed esterase and AChE activities, but also increased toxicity to bees.


Assuntos
Abelhas/efeitos dos fármacos , Imidazóis/farmacologia , Inseticidas/farmacologia , Nitrocompostos/farmacologia , Animais , Abelhas/fisiologia , Clorobenzenos/administração & dosagem , Clorobenzenos/farmacologia , Sinergismo Farmacológico , Imidazóis/administração & dosagem , Inseticidas/administração & dosagem , Neonicotinoides , Nitrocompostos/administração & dosagem , Triazóis/administração & dosagem , Triazóis/farmacologia
19.
Int J Mol Sci ; 18(2)2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28146087

RESUMO

A microarray developed on the basis of 2895 unique transcripts from larval gut was used to compare gut gene expression profiles between a laboratory-selected Cry1Ab-resistant (R) strain and its isoline susceptible (S) strain of the European corn borer (Ostrinia nubilalis) after the larvae were fed the leaves of transgenic corn (MON810) expressing Cry1Ab or its non-transgenic isoline for 6 h. We revealed 398 gut genes differentially expressed (i.e., either up- or down-regulated genes with expression ratio ≥2.0) in S-strain, but only 264 gut genes differentially expressed in R-strain after being fed transgenic corn leaves. Although the percentages of down-regulated genes among the total number of differentially expressed genes (50% in S-strain and 45% in R-strain) were similar between the R- and S-strains, the expression ratios of down-regulated genes were much higher in S-strain than in R-strain. We revealed that 17 and 9 significantly up- or down-regulated gut genes from S and R-strain, respectively, including serine proteases and aminopeptidases. These genes may be associated with Cry1Ab toxicity by degradation, binding, and cellular defense. Overall, our study suggests enhanced adaptation of Cry1Ab-resistant larvae on transgenic Cry1Ab corn as revealed by lower number and lower ratios of differentially expressed genes in R-strain than in S-strain of O. nubilalis.


Assuntos
Proteínas de Bactérias/genética , Resistência à Doença , Endotoxinas/genética , Proteínas Hemolisinas/genética , Interações Hospedeiro-Parasita , Larva/genética , Mariposas/genética , Transcriptoma , Zea mays/parasitologia , Animais , Animais Geneticamente Modificados , Toxinas de Bacillus thuringiensis , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Perfilação da Expressão Gênica , Mariposas/microbiologia , Folhas de Planta , Plantas Geneticamente Modificadas , Zea mays/genética , Zea mays/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-27376032

RESUMO

"Candidatus Liberibacter solanacearum" (Lso) has emerged as a serious threat world-wide. Five Lso haplotypes have been identified so far. Haplotypes A and B are present in the Americas and/or New Zealand, where they are vectored to solanaceous plants by the potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). The fastidious nature of these pathogens has hindered the study of the interactions with their eukaryotic hosts (vector and plant). To understand the strategies used by these pathogens to infect their vector, the effects of each Lso haplotype (A or B) on psyllid fitness was investigated, and genome-wide transcriptomic and RT-qPCR analyses were performed to evaluate Lso gene expression in association with its vector. Results showed that psyllids infected with haplotype B had significantly lower percentage of nymphal survival compared to psyllids infected with haplotype A. Although overall gene expression across Lso genome was similar between the two Lso haplotypes, differences in the expression of key candidate genes were found. Among the 16 putative type IV effector genes tested, four of them were differentially expressed between Lso haplotypes, while no differences in gene expression were measured by qPCR or transcriptomic analysis for the rest of the genes. This study provides new information regarding the pathogenesis of Lso haplotypes in their insect vector.


Assuntos
Haplótipos , Hemípteros/fisiologia , Interações Hospedeiro-Patógeno , Insetos Vetores/fisiologia , Rhizobiaceae/crescimento & desenvolvimento , Rhizobiaceae/patogenicidade , Animais , Perfilação da Expressão Gênica , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Rhizobiaceae/classificação , Rhizobiaceae/genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA