Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673934

RESUMO

The calmodulin-binding protein 60 (CBP60) family is a gene family unique to plants, and its members play a crucial role in plant defense responses to pathogens and growth and development. Considering that cotton is the primary source of natural cotton textile fiber, the functional study of its CBP60 gene family members is critical. In this research, we successfully identified 162 CBP60 members from the genomes of 21 species. Of these, 72 members were found in four cotton species, divided into four clades. To understand the function of GhCBP60B in cotton in depth, we conducted a detailed analysis of its sequence, structure, cis-acting elements, and expression patterns. Research results show that GhCBP60B is located in the nucleus and plays a crucial role in cotton growth and development and response to salt and drought stress. After using VIGS (virus-induced gene silencing) technology to conduct gene silencing experiments, we found that the plants silenced by GhCBP60B showed dwarf plants and shortened stem nodes, and the expression of related immune genes also changed. In further abiotic stress treatment experiments, we found that GhCBP60B-silenced plants were more sensitive to drought and salt stress, and their POD (peroxidase) activity was also significantly reduced. These results imply the vital role of GhCBP60B in cotton, especially in regulating plant responses to drought and salt stress. This study systematically analyzed CBP60 gene family members through bioinformatics methods and explored in depth the biological function of GhCBP60B in cotton. These research results lay a solid foundation for the future use of the GhCBP60B gene to improve cotton plant type and its drought and salt resistance.


Assuntos
Proteínas de Ligação a Calmodulina , Regulação da Expressão Gênica de Plantas , Gossypium , Estresse Fisiológico , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Secas , Genoma de Planta , Gossypium/genética , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673820

RESUMO

C-TERMINALLY ENCODED PEPTIDEs (CEPs) are a class of peptide hormones that have been shown in previous studies to play an important role in regulating the development and response to abiotic stress in model plants. However, their role in cotton is not well understood. In this study, we identified 54, 59, 34, and 35 CEP genes from Gossypium hirsutum (2n = 4x = 52, AD1), G. barbadense (AD2), G. arboreum (2n = 2X = 26, A2), and G. raimondii (2n = 2X = 26, D5), respectively. Sequence alignment and phylogenetic analyses indicate that cotton CEP proteins can be categorized into two subgroups based on the differentiation of their CEP domain. Chromosomal distribution and collinearity analyses show that most of the cotton CEP genes are situated in gene clusters, suggesting that segmental duplication may be a critical factor in CEP gene expansion. Expression pattern analyses showed that cotton CEP genes are widely expressed throughout the plant, with some genes exhibiting specific expression patterns. Ectopic expression of GhCEP46-D05 in Arabidopsis led to a significant reduction in both root length and seed size, resulting in a dwarf phenotype. Similarly, overexpression of GhCEP46-D05 in cotton resulted in reduced internode length and plant height. These findings provide a foundation for further investigation into the function of cotton CEP genes and their potential role in cotton breeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Família Multigênica , Filogenia , Proteínas de Plantas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromossomos de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Desenvolvimento Vegetal/genética , Peptídeos/genética , Peptídeos/metabolismo , Mapeamento Cromossômico , Genes de Plantas
3.
BMC Plant Biol ; 23(1): 599, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017370

RESUMO

BACKGROUND: Phospholipases As (PLAs) are acyl hydrolases that catalyze the release of free fatty acids in phospholipids and play multiple functions in plant growth and development. The three families of PLAs are: PLA1, PLA2 (sPLA), and patatin-related PLA (pPLA). The diverse functions that pPLAs play in the growth and development of a broad range of plants have been demonstrated by prior studies. METHODS: Genome-wide analysis of the pPLA gene family and screening of genes for expression verification and gene silencing verification were conducted. Additionally, pollen vitality testing, analysis of the pollen expression pattern, and the detection of POD, SOD, CAT, MDA, and H2O2 were performed. RESULT: In this study, 294 pPLAs were identified from 13 plant species, including 46 GhpPLAs that were divided into three subfamilies (I-III). Expression patterns showed that the majority of GhpPLAs were preferentially expressed in the petal, pistil, anther, and ovule, among other reproductive organs. Particularly, GhpPLA23 and GhpPLA44, were found to be potentially important for the reproductive development of G. hirsutum. Functional validation was demonstrated by VIGS which showed that reduced expression levels of GhpPLA23 and GhpPLA44 in the silenced plants were associated with a decrease in pollen activity. Moreover, a substantial shift in ROS and ROS scavengers and a considerable increase in POD, CAT, SOD, and other physiological parameters was found out in these silenced plants. Our results provide plausibility to the hypothesis that GhpPLA23 and GhpPLA44 had a major developmental impact on cotton reproductive systems. These results also suggest that pPLAs are important for G. hirsutum's reproductive development and suggest that they could be employed as potential genes for haploid induction. CONCLUSIONS: The findings of the present research indicate that pPLA genes are essential for the development of floral organs and sperm cells in cotton. Consequently, this family might be important for the reproductive development of cotton and possibly for inducing the plant develop haploid progeny.


Assuntos
Peróxido de Hidrogênio , Sementes , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo , Plantas/metabolismo , Genitália/metabolismo , Superóxido Dismutase/metabolismo , Gossypium/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia
4.
Int J Biol Macromol ; 253(Pt 8): 127645, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37879575

RESUMO

GEX1 (gamete expressed 1) proteins are critical membrane proteins conserved among flowering plants that are involved in the nuclear fusion and embryonic development. Herein, we identified the 32 GEX1 proteins from representative land plants. In cotton, GEX1 genes expressed in various tissues across all stages of the life cycle, especially in pollen. Subcellular localization indicated the position of GhGEX1 protein was localized in the endoplasmic reticulum. Experimental research has demonstrated that GhGEX1 has the potential to improve the partial abortion phenotype in Arabidopsis. CRISPR/Cas9-mediated knockout of GhGEX1 exhibited the seed abortion. Paraffin section of the ovule revealed that the polar nuclear fusion of ghgex1 plants remains at a standstill when the wild type has developed into a normal embryo. Comparative transcriptome analysis showed that the DEGs of reproductive-related processes and membrane-related processes were repressed in the pollen of knockout lines. The predicted protein interactions showed that GhGEX1 probably functioned through interactions with proteins related to reproduction and membrane. From all these investigations, it was possible to conclude that the GEX1 proteins are evolutionarily conserved in flowering plants and elucidated the pivotal roles during fertilization and early embryonic development in cotton.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Reprodução/genética , Pólen/genética , Pólen/metabolismo , Plantas/metabolismo
5.
BMC Plant Biol ; 23(1): 409, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658295

RESUMO

BACKGROUND: Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton. RESULT: In this study, a total of 27 GhCKXs were identified by the genome-wide investigation and distributed across 18 chromosomes. Phylogenetic tree analysis revealed that CKX genes were clustered into four clades, and most gene expansions originated from segmental duplications. The CKXs gene structure and motif analysis displayed remarkably well conserved among the four groups. Moreover, the cis-acting elements related to the abiotic stress, hormones, and light response were identified within the promoter regions of GhCKXs. Transcriptome data and RT-qPCR showed that GhCKX genes demonstrated higher expression levels in various tissues and were involved in cotton's abiotic stress and phytohormone response. The protein-protein interaction network indicates that the CKX family probably participated in redox regulation, including oxidoreduction or ATP levels, to mediate plant growth and development. Functionally identified via virus-induced gene silencing (VIGS) found that the GhCKX14 gene improved drought resistance by modulating the antioxidant-related activitie. CONCLUSIONS: In this study, the CKX gene family members were analyzed by bioinformatics, and validates the response of GhCKX gene to various phytohormone treatment and abiotic stresses. Our findings established the foundation of GhCKXs in responding to abiotic stress and GhCKX14 in regulating drought resistance in cotton.


Assuntos
Secas , Gossypium , Gossypium/genética , Antioxidantes , Filogenia , Reguladores de Crescimento de Plantas
6.
Carbohydr Polym ; 305: 120538, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737190

RESUMO

Oil pollution has caused more and more serious damages to the environment, especially to water. Oil and water separation technologies based on high-performance absorbing materials have attracted extensive attentions. Herein, elasticity-enhanced bacterial cellulose (BC) aerogel is synthesized for oil/water separation through thermochemical vapor deposition (CVD) catalyzed by 1, 2, 3, 4-butanetetracarboxylic acid (BTCA). BTCA has two functions, namely, esterification with BC and catalyzing CVD. The prepared aerogel could be recovered soon after being compressed and the elastic recovery was >90 % at set maximum deformation of 80 %. And, it also exhibits vigorous fatigue resistance with an elastic deformation of >80 % after 50 cycles. The high elastic and hydrophobic aerogel is very suitable for absorbing and desorbing oils by simple mechanical squeezing. The adsorption capacity for n-hexane and dichloroethane maintain 87 % and 81 % after 50 cycles, respectively, which implies robust reusability. Importantly, the CVD could also be catalyzed by other solid acids such as citric acid and vitamin C. This design and fabrication method offers a novel avenue for the preparation of hydrophobic bacterial cellulose aerogel with high elasticity.


Assuntos
Doenças Cardiovasculares , Celulose , Humanos , Celulose/química , Óleos/química , Catálise
7.
Food Res Int ; 164: 112397, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737980

RESUMO

Quinones are highly reactive oxidants and play an essential role in inducing quality deterioration of fruit and vegetable products. Here, a novel stable isotope-labeling approach in combination with high-resolution tandem mass spectrometry UPLC-Q-TOF/MS and UPLC-Q-Exactive Orbitrap/MS, was successfully applied in tracking quinone reaction pathways in both real wines and model reaction systems. Unexpectedly, the binding products of quinone-quinone and quinone-catechol that are not derived from either nucleophilic reaction or redox reaction were discovered and showed the significant high peak area.Self-coupling reactions of semiquinone radicals might provide a possible interpretation for the formation of quinone-quinone products, and a charge transfer reaction coupled with a complementary donor-acceptor interaction is feasibly responsible for the products with a quinone-catechol structure. These findings endow a new perspective for quinone metabolic pathway in foods.


Assuntos
Quinonas , Espectrometria de Massas em Tandem , Quinonas/química , Oxirredução , Catecóis
8.
Genes (Basel) ; 13(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36553463

RESUMO

F-box/LR (FBXL), Leucine-rich repeats in F-box proteins, belongs to the Skp1-Cullin1-F-box protein (SCF) E3 ligase family. FBXL genes play important roles in plant growth, such as plant hormones, responses to environmental stress, and floral organ development. Here, a total of 518 FBXL genes were identified and analyzed in six plant species. Phylogenetic analysis showed that AtFBXLs, VvFBXLs, and GrFBXLs were clustered into three subfamilies (Ⅰ-Ⅲ). Based on the composition of the F-box domain and carboxyl-terminal amino acid sequence, FBXL proteins were classified into three types (Type-A/-B/-C). Whole-genome duplication (WGD) along with tandem duplications and segmental contributed to the expansion of this gene family. The result indicates that four cotton species are also divided into three subfamilies. FBXLs in cotton were classified into three clades by phylogenetic and structural analyses. Furthermore, expression analyses indicated that the expression patterns of GhFBXLs in different cotton tissues were different. The highly expressed of GH_A07G2363 in 5-8 mm anthers, indicates that this gene might play a role in the reproductive process, providing candidate genes for future studies on cotton fertility materials. This study provides an original functional opinion and a useful interpretation of the FBXL protein family in cotton.


Assuntos
Proteínas F-Box , Família Multigênica , Duplicação Gênica , Filogenia , Genes de Plantas , Estresse Fisiológico/genética , Proteínas F-Box/genética
9.
Genes (Basel) ; 13(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36553581

RESUMO

Filamin protein is characterized by an N-terminal actin-binding domain that is followed by 24 Ig (immunoglobulin)-like repeats, which act as hubs for interactions with a variety of proteins. In humans, this family has been found to be involved in cancer cell invasion and metastasis and can be involved in a variety of growth signal transduction processes, but it is less studied in plants. Therefore, in this study, 54 Filamin gene family members from 23 plant species were investigated and divided into two subfamilies: FLMN and GEX2. Subcellular localization showed that most of the Filamin gene family members were located in the cell membrane. A total of 47 Filamin gene pairs were identified, most of which were whole-genome copies. Through the analyses of cis-acting elements, expression patterns and quantitative fluorescence, it was found that GH_ A02G0519 and GH_ D02G0539 are mainly expressed in the reproductive organs of upland cotton, and their interacting proteins are also related to the fertilization process, whereas GH_A02G0216 and GH_D02G0235 were related to stress. Thus, it is speculated that two genes of the GEX2 subfamily (GH_A02G0519 and GH_D02G0539) may be involved in the reproductive development of cotton and may affect the fertilization process of cotton. This study provides a theoretical basis for the further study of the cotton Filamin gene family.


Assuntos
Genoma de Planta , Gossypium , Filaminas/genética , Filaminas/metabolismo , Perfilação da Expressão Gênica , Gossypium/genética , Filogenia
10.
Food Chem X ; 16: 100512, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36519110

RESUMO

Non-enzymatic browning induced by polyphenol oxidation is an essential problem during the processing and storage of fruit and vegetable products. Here, the non-enzymatic browning mechanism between catechin (CAT), chlorogenic acid (CQA) and their corresponding quinones was investigated in model systems during the 32-d long-term storage. The results showed that CAT and catechin quinone (CATQ), which contains both A ring with a resorcinol structure and an o-diphenol B ring, are important precursors for browning, while chlorogenic acid (CQA) has a minor effect on browning. Chlorogenic acid quinone (CQAQ)-mediated CAT oxidation (kCAT-degradation = 0.0458 mol·L-1·d-1) was faster than CAT autoxidation (kCAT-degradation = 0.0006 mol·L-1·d-1), and there was no significant difference between CQAQ-mediated CAT oxidation and CATQ-mediated CQA oxidation. These indicate that CQAQ oxidizes CAT to CATQ quickly, and CATQ reacts with CAT subsequently through complex reactions to produce brown pigments in model systems during long-term storage.

11.
Antioxidants (Basel) ; 11(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421411

RESUMO

Drought-induced 19 (Di19) protein is a Cys2/His2 (C2H2) type zinc-finger protein, which plays a crucial role in plant development and in response to abiotic stress. This study systematically investigated the characteristics of the GhDi19 gene family, including the member number, gene structure, chromosomal distribution, promoter cis-elements, and expression profiles. Transcriptomic analysis indicated that some GhDi19s were up-regulated under heat and salt stress. Particularly, two nuclear localized proteins, GhDi19-3 and GhDi19-4, were identified as being in potential salt stress responsive roles. GhDi19-3 and GhDi19-4 decreased sensitivity under salt stress through virus-induced gene silencing (VIGS), and showed significantly lower levels of H2O2, malondialdehyde (MDA), and peroxidase (POD) as well as significantly increased superoxide dismutase (SOD) activity. This suggested that their abilities were improved to effectively reduce the reactive oxygen species (ROS) damage. Furthermore, certain calcium signaling and abscisic acid (ABA)-responsive gene expression levels showed up- and down-regulation changes in target gene-silenced plants, suggesting that GhDi19-3 and GhDi19-4 were involved in calcium signaling and ABA signaling pathways in response to salt stress. In conclusion, GhDi19-3 and GhDi19-4, two negative transcription factors, were found to be responsive to salt stress through calcium signaling and ABA signaling pathways.

12.
Int J Biol Macromol ; 222(Pt A): 938-949, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183757

RESUMO

The complex chemical structure of polypeptide and the imperfection of processing technology cause the mechanical properties of regenerated keratin to be hard and brittle. This defect seriously affects the application prospects of keratin materials. To solve the above problems, α-lipoic acid modified keratin (KER) was blended with Polyamide 6 (PA6) and prepared into composite fibers via the wet-spinning method in this work. The spinnability and spinning conditions of the KER/PA6 blend solution were analyzed by rheological theory. The results illustrated that keratin solution will easily form a gel state under certain temperatures and concentrations, which was not conducive to the preparation of regenerated fiber. When the temperature was 45 °C and the mass fraction was 10 %, the viscosity and rheology of the solution were appropriate. The rheological properties of the blend solution showed that too much keratin would make the solution easy to gel, which was not conducive to the preparation of regenerated fibers and may affect the fiber properties. On this basis, the prepared composite fibers were characterized to explore the macromolecular aggregation state of keratin and PA6 in fibers. FT-IR and XRD results proved that there was no chemical reaction between keratin and PA6 in the composite fibers, which belonged to physical blending. At the same time, the two polymers had good compatibility and can be blended at the molecular level. SEM, DSC, and tensile strength test results indicated that when the proportion of keratin was too high, the structure and properties of the composite fibers will have obvious defects, which was consistent with the rheological analysis. Therefore, the blend ratio of keratin/PA6 was determined to be 3:7. Under this condition, the fibers exhibited a homogeneous structure and good thermal properties, especially its mechanical properties were close to wool fibers. The KER/PA6 composite fibers show important research value and can also provide technical reference for the development of regenerated biomass materials.


Assuntos
Queratinas , Nylons , Animais , Queratinas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Queratina-6 , Polímeros/química , Reologia
13.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890618

RESUMO

Oxidized sucrose is a non-formaldehyde crosslinking agent with many applications in polymer crosslinking and modification, such as in the preparation of starch films and protein films. However, research on the structure of oxidized sucrose is lacking. In this paper, oxidized sucrose was synthesized through selective oxidation of sodium periodate. By LC-MS, FTIR, TGA, NMR, and HRMS analyses, it was shown that oxidized sucrose existed in the form of a hydrate, and the tetraaldehyde oxidized sucrose could isomerize into the form of two six-membered hemiacetal rings. The structure of oxidized sucrose was also verified by theoretical calculations. Furthermore, the diffusional properties of oxidized sucrose were investigated by the rolling-film method. Finally, it was found that oxidized sucrose used as a crosslinking agent could effectively improve the wrinkle recovery performance of cotton fabrics.

14.
Front Mol Biosci ; 9: 888983, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573733

RESUMO

The Jumonji C (JmjC) domain-containing protein family, an important family of histone demethylase in plants, can directly reverse histone methylation and play important roles in various growth and development processes. In the present study, 51 JmjC genes (GhJMJs) were identified by genome-wide analysis in upland cotton (Gossypium hirsutum), which can be categorized into six distinct groups by phylogenetic analysis. Extensive syntenic relationship events were found between G. hirsutum and Theobroma cacao. We have further explored the putative molecular regulatory mechanisms of the JmjC gene family in cotton. GhJMJ24 and GhJMJ49 were both preferentially expressed in embryogenic callus compared to nonembryogenic callus in cotton tissue culture, which might be regulated by transcription factors and microRNAs to some extent. Further experiments indicated that GhJMJ24 and GhJMJ49 might interact with SUVH4, SUVH6, DDM1, CMT3, and CMT1 in the nucleus, potentially in association with demethylation of H3K9me2. Taken together, our results provide a foundation for future research on the biological functions of GhJMJ genes in cotton, especially in somatic embryogenesis in cotton tissue culture, which is crucial for the regeneration of transgenic plants.

15.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946950

RESUMO

Fertilization is essential to sexual reproduction of flowering plants. EC1 (EGG CELL 1) proteins have a conserved cysteine spacer characteristic and play a crucial role in double fertilization process in many plant species. However, to date, the role of EC1 gene family in cotton is fully unknown. Hence, detailed bioinformatics analysis was explored to elucidate the biological mechanisms of EC1 gene family in cotton. In this study, we identified 66 genes in 10 plant species in which a total of 39 EC1 genes were detected from cotton genome. Phylogenetic analysis clustered the identified EC1 genes into three families (I-III) and all of them contain Prolamin-like domains. A good collinearity was observed in the synteny analysis of the orthologs from cotton genomes. Whole-genome duplication was determined to be one of the major impetuses for the expansion of the EC1 gene family during the process of evolution. qRT-PCR analysis showed that EC1 genes were highly expressed in reproductive tissues under multiple stresses, signifying their potential role in enhancing stress tolerance or responses. Additionally, gene interaction networks showed that EC1 genes may be involved in cell stress and response transcriptional regulator in the synergid cells and activate the expression of genes required for pollen tube guidance. Our results provide novel functional insights into the evolution and functional elucidation of EC1 gene family in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , China , Evolução Molecular , Flores/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Genoma de Planta/genética , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Reprodução/genética , Transcriptoma/genética
16.
Int J Biol Macromol ; 183: 1257-1269, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33965485

RESUMO

Members of DOMAIN OF UNKNOWN FUNCTION 679 membrane protein (DMP) gene family, a type of plant-specific membrane proteins, have been proposed to function in various physiological processes such as reproductive development and senescence in plants. Here, a total of 174 DMP genes were identified and analyzed in 16 plant species (including 58 DMPs in four cotton species). Phylogenetic analysis showed that these DMPs could be clustered into five subfamilies (I-V). 137 duplicated cotton gene pairs were identified and most duplicate events were formed by whole-genome duplication (WGD)/segmental duplications. Expression analysis revealed that most of cotton DMPs were mainly expressed in the reproductive organs (the sepal, petal, pistil and anther) and the fiber of secondary cell wall stage. GhDMPs promoter regions containing the different cis-elements also showed different responses to abiotic stress. In addition, gene interaction networks showed that DMPs, as an endomembrane system, were involved in plant senescence process and flower reproductive development. We speculated GhDMP8-A/-D, GbDMP8-A/-D could be used as some candidate gene for inducing cotton haploid. This genome-wide study provides a systematic analysis of the cotton DMP gene family, and further insights towards understanding the potential functions of candidate genes.


Assuntos
Gossypium/crescimento & desenvolvimento , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento Cromossômico , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Estresse Fisiológico , Distribuição Tecidual , Sequenciamento Completo do Genoma
17.
Front Plant Sci ; 12: 646622, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763102

RESUMO

SUN-domain containing proteins are crucial nuclear membrane proteins involved in a plethora of biological functions, including meiosis, nuclear morphology, and embryonic development, but their evolutionary history and functional divergence are obscure. In all, 216 SUN proteins from protists, fungi, and plants were divided into two monophyletic clades (Cter-SUN and Mid-SUN). We performed comprehensive evolutionary analyses, investigating the characteristics of different subfamilies in plants. Mid-SUNs further evolved into two subgroups, SUN3 and SUN5, before the emergence of the ancestor of angiosperms, while Cter-SUNs retained one subfamily of SUN1. The two clades were distinct from each other in the conserved residues of the SUN domain, the TM motif, and exon/intron structures. The gene losses occurred with equal frequency between these two clades, but duplication events of Mid-SUNs were more frequent. In cotton, SUN3 proteins are primarily expressed in petals and stamens and are moderately expressed in other tissues, whereas SUN5 proteins are specifically expressed in mature pollen. Virus-induced knock-down and the CRISPR/Cas9-mediated knockout of GbSUN5 both showed higher ratios of aborted seeds, although pollen viability remained normal. Our results indicated divergence of biological function between SUN3 and SUN5, and that SUN5 plays an important role in reproductive development.

18.
Front Plant Sci ; 11: 593679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324436

RESUMO

Cotton (Gossypium) seed fibers can be divided into lint (long) or fuzz (very short). Using fiberless (fuzzless-lintless) mutants, the lint initiation gene Li3 was identified by map-based cloning. The gene is an R2R3-MYB transcription factor located on chromosome D12 (GhMML3_D12). Sequence analysis revealed that li3 is a loss-of-function allele containing a retrotransposon insertion in the second exon that completely blocks the gene's expression. The genetic loci n2 and n3 underlying the recessive fuzzless phenotype in Gossypium hirsutum were also mapped. The genomic location of n3 overlapped with that of the dominant fuzzless locus N1 , and n3 appeared to be a loss-of-function allele caused by a single nucleotide polymorphism (SNP) mutation in the coding region of GhMML3_A12. The n2 allele was found to be co-located with li3 and originated from G. babardense. n2 and li3 are possibly the multiple alleles of the GhMML3_D12 gene. Genetic analysis showed that Li3 and N3 are a pair of homologs with additive effects for the initiation of fibers (fuzz or lint). In addition, the presence of another locus was speculated, and it appeared to show an inhibitory effect on the expression of GhMML3. These findings provide new information about the genetic factors affecting the initiation of fibers in cotton.

19.
Front Plant Sci ; 11: 81, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133019

RESUMO

The open-bud (ob) mutants in cotton display abnormal flower buds with the stigma and upper anthers exposed before blooming. This characteristic is potentially useful for the efficient production of hybrid seeds. The recessive inheritance pattern of the ob phenotype in allotetraploid cotton is determined by duplicated recessive loci (ob1ob1ob2ob2). In this study, ob1, which is a MIXTA-like MYB gene on chromosome D13 (MML10_Dt), was identified by map-based cloning. In Gossypium barbadense (Gb) acc. 3-79, a single nucleotide polymorphism (SNP) (G/A) at the splice site of the first intron and an 8-bp deletion in the third exon of MML10_Dt were found, which are the causative mutations at the ob1 loci. A 1783-bp deletion that leads to the loss of the third exon and accounts for the causal variation at the ob2 loci was found in MML10_At of Gossypium hirsutum (Gh) acc. TM-1. The ob phenotype results from the combination of these two loss-of-function loci. Genotyping assays showed that the ob1 and ob2 loci appeared after the formation of allotetraploid cotton and were specific for Gb and Gh, respectively. All Gb lines and most Gh cultivars carry the single corresponding mutant alleles. Genome-wide transcriptome analysis showed that some of the MYB genes and genes related to cell wall biogenesis, trichome differentiation, cytokinin signal transduction, and cell division were repressed in the ob mutants, which may lead to suppression of petal growth. These findings should be of value for breeding superior ob lines in cotton.

20.
BMC Genomics ; 21(1): 69, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969111

RESUMO

BACKGROUND: Members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family are involved in various plant biological processes via protein-DNA and protein-protein interaction. However, no the systematic identification and analysis of AHL gene family have been reported in cotton. RESULTS: To investigate the potential functions of AHLs in cotton, genome-wide identification, expressions and structure analysis of the AHL gene family were performed in this study. 48, 51 and 99 AHL genes were identified from the G.raimondii, G.arboreum and G.hirsutum genome, respectively. Phylogenetic analysis revealed that the AHLs in cotton evolved into 2 clades, Clade-A with 4-5 introns and Clade-B with intronless (excluding AHL20-2). Based on the composition of the AT-hook motif(s) and PPC/DUF 296 domain, AHL proteins were classified into three types (Type-I/-II/-III), with Type-I AHLs forming Clade-B, and the other two types together diversifying in Clade-A. The detection of synteny and collinearity showed that the AHLs expanded with the specific WGD in cotton, and the sequence structure of AHL20-2 showed the tendency of increasing intron in three different Gossypium spp. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of orthologous gene pairs revealed that the AHL genes of G.hirsutum had undergone through various selection pressures, purifying selection mainly in A-subgenome and positive selection mainly in D-subgenome. Examination of their expression patterns showed most of AHLs of Clade-B expressed predominantly in stem, while those of Clade-A in ovules, suggesting that the AHLs within each clade shared similar expression patterns with each other. qRT-PCR analysis further confirmed that some GhAHLs higher expression in stems and ovules. CONCLUSION: In this study, 48, 51 and 99 AHL genes were identified from three cotton genomes respectively. AHLs in cotton were classified into two clades by phylogenetic relationship and three types based on the composition of motif and domain. The AHLs expanded with segmental duplication, not tandem duplication. The expression profiles of GhAHLs revealed abundant differences in expression levels in various tissues and at different stages of ovules development. Our study provided significant insights into the potential functions of AHLs in regulating the growth and development in cotton.


Assuntos
Proteínas de Ligação a DNA/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Gossypium/genética , Família Multigênica , Proteínas de Plantas/genética , Motivos de Aminoácidos , Mapeamento Cromossômico , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Filogenia , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA