Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Int J Biol Macromol ; 277(Pt 1): 134159, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059540

RESUMO

The development of high-performance biodegradable polylactic acid (PLA) materials integrating high strength, malleability and toughness is desired but an ongoing challenge. In this work, a novel full-biobased block copolymer was designed and synthesized by grafting L (+)-lactide (L-LA) and ε-caprolactone (ε-CL) onto lignin via ring-opening polymerization. The obtained lignin-PLA-PCL block copolymer was composed of rigid lignin and poly (LA-CL) rubber segment, could self-assemble into uniform nano-micelles with average diameters of 80-100 nm regulated by simply altering copolymer content. The incorporation of lignin-PLA-PCL copolymers into PLA matrix induced the formation of many cavities, promoted free volume between PLA matrix and copolymer to accelerate chain mobility, achieving excellent ductility and stretchability with maximum stretching deformation of 64.8 %. The resultant PLA composites with the copolymer content as low as 5 wt% displayed simultaneously improved strength (41.84 MPa) and toughness (8.1 MJ/m3), 6.7 % and 1520 % increment than those of neat PLA, respectively. The reinforcing and toughening mechanisms were explored and verified that the combination of cavity growth and fibrillation, followed by extensive shear yielding of matrix, causing substantial plastic deformation. This study extended the design strategy and the foundation for simultaneous reinforcing and toughening PLA plastics using lignin-derived rubbery micelles.

2.
Heliyon ; 10(5): e27467, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495140

RESUMO

This research provides an in-depth assessment of two paper yarn variants, examining their structural, functional, and performance characteristics. These yarns demonstrated favorable properties, including suitable linear density, twist, typical cellulosic functional groups as confirmed by Infrared spectroscopy, minimal hairiness, moisture transfer, and creditable mechanical strength. These yarns have flat layered cross-sections and grooved longitudinal surfaces. In addition, a low hairiness index (1.3-1.33) further acknowledged their smooth surface. Their remarkable evenness (15.86% and 7.08%) supported their effective wicking properties. Despite average breaking strength (0.77 cN/dTex and 1.05 cN/dTex) and moderate elongation, these yarns exhibited exceptional water-washing resistance and retained over 89% breaking strength after 15 washes. This study ranks these paper yarns as highly suitable for durable clothing fabrics, providing promising sustainable alternatives in the textile industry.

3.
ACS Nano ; 18(12): 9053-9062, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38465964

RESUMO

Photoreceptor cells of vertebrates feature ultrastructural membranes interspersed with abundant photosensitive ion pumps to boost signal generation and realize high gain in dim light. In light of this, superstructured optoionic heterojunctions (SSOHs) with cation-selective nanochannels are developed for manipulating photo-driven ion pumping. A template-directed bottom-up strategy is adopted to sequentially assemble graphene oxide (GO) and PEDOT:PSS into heterogeneous membranes with sculptured superstructures, which feature programmable variation in membrane topography and contain a donor-acceptor interface capable of maintaining electron-hole separation upon photoillumination. Such elaborate design endows SSOHs with a much higher magnitude of photo-driven ion flux against a concentration gradient in contrast to conventional optoionic membranes with planar configuration. This can be ascribed to the buildup of an enhanced transmembrane potential owing to the effective separation of photogenerated carriers at the heterojunction interface and the increase of energy input from photoillumination due to a synergistic effect of reflection reduction, broad-angle absorption, and wide-waveband absorption. This work unlocks the significance of membrane topographies in photo-driven transmembrane transportation and proposes such a universal prototype that could be extended to other optoionic membranes to develop high-performance artificial ion pumps for energy conversion and sensing.


Assuntos
Elétrons , Bombas de Íon , Animais , Potenciais da Membrana , Meios de Transporte , Células Fotorreceptoras
4.
Mater Horiz ; 11(11): 2685-2693, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38497840

RESUMO

Poly(amidoxime) (PAO) has been recognized as the most potential candidate for extracting uranium from seawater, owing to its merits of outstanding uranium affinity, low cost, and large-scale production. Despite remarkable achievements, existing PAO sorbents suffer from unsatisfactory uranium extraction efficiency and selectivity, as imposed by the inherently sluggish uranium adsorption kinetics and inevitable spatial configuration transition of amidoxime, which diminishes uranium affinity. Herein, we discover a facile and integrated design to elaborate a PAO/MXene nanocomposite that delivers ultrahigh and durable uranium/vanadium (U/V) selectivity. The key to our design lies in harnessing MXene-enabled strong intermolecular interactions to PAO to minimize the spatial configuration transition of amidoxime and stabilizing its superior uranium affinity, as well as creating a separated photothermal interface to maximize temperature-strengthened affinity for uranium over vanadium. Such a synergetic effect allows the nanocomposite to acquire over a 4-fold improvement in U/V selectivity compared to that of pure PAO as well as an unprecedented distribution coefficient of uranium compared to most state-of-the-art sorbents. We further demonstrate that our nanocomposite exhibits durable U/V selectivity with negligible attenuation and good antibacterial ability even in long-term operation. The design concept and extraordinary performance in this study bring PAO-based sorbents a step closer to practical uranium extraction from seawater.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38305963

RESUMO

Graphene-based adsorbent was prepared by adopting a green synthetic route via the chemical exfoliation of graphite and low-temperature thermal activation. Prepared reactive graphene (RG) was characterized through various techniques, and its adsorption capabilities for textile dye removal were investigated for Acid Blue-93 (AB) and Reactive Red-195 (RR) under different operational conditions. The dye sorption equilibrium and mechanism were comprehensively studied using isotherm and kinetic models and compared statistically to explain the sorption behavior. Results show AB and RR adsorption by RG attains equilibrium in 60 min and 70 min, with a high sorption quantity of 397 mg g-1 and 262 mg g-1 (initial dye concentration of 100 mg L-1), respectively. The dye sorption anticipates that the high surface area (104.52 m2 gm-1) and constructed meso-macroporous features of RG facilitated the interaction between the dye molecules and graphitic skeleton. The R-P isotherm fitted the best of equilibrium data, having the least variance in residuals for both dyes (AB = 0.00031 and RR = 0.00047). The pseudo-second order model best fitted the kinetics of sorption on RG, with chemisorption being the predominant process delimiting step. The overall results promise the dye removal capability of RG to be an efficient adsorbent for azo-based dyes from textile effluents.

6.
Small ; 20(3): e2304594, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691089

RESUMO

The development of efficient and low-cost catalysts for cathodic oxygen reduction reaction (ORR) in Zn-air battery (ZAB) is a key factor in reducing costs and achieving industrialization. Here, a novel segregated CoNiPt alloy embedded in N-doped porous carbon with a nanoflowers (NFs)-like hierarchy structure is synthesized through pyrolyzing Hofmann-type metal-organic frameworks (MOFs). The unique hierarchical NFs structure exposes more active sites and facilitates the transportation of reaction intermediates, thus accelerating the reaction kinetics. Impressively, the resulting 15% CoNiPt@C NFs catalyst exhibits outstanding alkaline ORR activity with a half-wave potential of 0.93 V, and its mass activity is 7.5 times higher than that of commercial Pt/C catalyst, surpassing state-of-the-art noble metal-based catalysts. Furthermore, the assembled CoNiPt@C+RuO2 ZAB demonstrates a maximum power density of 172 mW cm-2 , which is superior to that of commercial Pt/C+RuO2 ZAB. Experimental results reveal that the intrinsic ORR mass activity is attributed to the synergistic interaction between oxygen defects and pyrrolic/graphitic N species, which optimizes the adsorption energy of the intermediate species in the ORR process and greatly enhances catalytic activity. This work provides a practical and feasible strategy for synthesizing cost-effective alkaline ORR catalysts by optimizing the electronic structure of MOF-derived catalysts.

7.
Int J Biol Macromol ; 253(Pt 1): 126521, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37633560

RESUMO

Biomass-derived sustainable film is a promising alternative to synthetic plastic, but hampered by strength, toughness and flexibility trade-off predicament. Here, a feasible and scalable strategy was proposed to fabricate strong and flexible lignocellulosic film through molecular reconstruction of cellulose and lignin. In this strategy, polyphenol lignin was absorbed and wrapped on the surface of cellulose fiber, forming strong interfacial adhesion and cohesion via intramolecular and intermolecular hydrogen bonding. Further, covalent ether bond was generated between the hydroxyl groups of lignocellulose to form chemical cross-linking network induced by epichlorohydrin (ECH). The synergistic effect of hydrogen bonding and stable chemical cross-linking enabled the resultant lignocellulosic film (ELCF) with outstanding mechanical strength of 132.48 MPa, the elongation at break of 9.77 %, and toughness of 9.77 MJ·m-3. Notably, the integration of polyphenol lignin synergistically improved the thermal stability, water resistance, UV-blocking performances of ELCF. Importantly, after immersion for 30 d, ELCF still possessed high wet strength of 70.38 MPa, and elongation at break of 7.70 %, suggesting excellent and durable mechanical performances. Moreover, ELCF could be biodegraded in the natural soil. Therefore, this study provides a new and versatile approach to reconstruct highly-performance lignocellulosic films coupling strength, toughness with flexibility for promising plastic replacement.


Assuntos
Celulose , Lignina , Biomassa , Polifenóis
8.
Carbohydr Polym ; 319: 121175, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567715

RESUMO

Fiber-based wearable electronic textiles have broad applications, but non-degradable substrates may contribute to electronic waste. The application of cellulose-based composite fibers as e-textiles is hindered by the lack of fast and effective preparation methods. Here, we fabricated polyaniline (PANI)/cellulose fibers (PC) with a unique skin-core structure through a wet-spinning homogeneous blended system. The conductive network formation was enabled at a mere 1 wt% PANI. Notably, PC15 (15 wt% PANI) shows higher electrical conductivity of 21.50 mS cm-1. Further, PC15 exhibits excellent ammonia sensing performance with a sensitivity of 2.49 %/ppm and a low limit of detection (LOD) of 0.6 ppm. Cellulose-based composite fibers in this work demonstrate good gas sensing and anti-static properties as potential devices for smart e-textiles.

9.
Chemphyschem ; 24(19): e202300234, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37428636

RESUMO

Phase change materials (PCMs) textiles have been developed for personal thermal management (PTM) while limited loading amount of PCMs in textiles reduced thermal buffering effect. In this work, we proposed a sandwich fibrous encapsulation to store polyethylene glycol (PEG) with PEG loading amount of 45 wt %, which consisted of polyester (PET) fabrics with hydrophobic coating as protection layers, polyurethane (PU) nanofibrous membranes as barrier layers and PEG-loaded viscose fabric as a PCM-loaded layer. The leakage was totally avoided by controlling weak interfacial adhesion between protection layer and melting PEG. The sandwich fibrous PEG encapsulations had an overall melting enthalpy value ranging from 50 J/g to 78 J/g and melting points ranging from 20 °C to 63 °C by using different PEGs. Besides, introduction of Fe microparticles in PCM-loaded layer enhanced thermal energy storage efficiency. We believe that the sandwich fibrous PEG encapsulation has a great potential in various fields.

10.
Carbohydr Polym ; 299: 120192, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876806

RESUMO

The development of sustainable, biodegradable, non-toxic biomass foams with outstanding physical properties to replace traditional petroleum-based foams is urgent. In this work, we proposed a simple, efficient, and scalable approach to fabricate nanocellulose (NC) interface enhanced all-cellulose foam through ethanol liquid phase exchange and subsequent ambient drying. In this process, NCs served as reinforcer and binder were integrated with pulp fiber to improve cellulose interfibrillar bonding and interface adhesion between NCs and pulp microfibrils. The resultant all-cellulose foam displayed stable microcellular structure (porosity of 91.7-94.5 %), low apparent density (0.08-0.12 g/cm3), and high compression modulus (0.49-2.96 MPa) by regulating the content and size of NCs. Further, the strengthening mechanism of the structure and property of all-cellulose foam were investigated in detail. This proposed process enabled ambient drying, and is simple and feasible for low-cost, practicable, and scalable production of biodegradable, green bio-based foam without special apparatuses and other chemicals.

11.
Chempluschem ; 88(4): e202300081, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36951444

RESUMO

Expanded graphite (EG) has been used to store phase change materials (PCM) to enhance thermal conductivity and avoid leakage. However, systematic investigation on physical structure of various embedded PCMs in EG is not reported. Besides, the effect of environment on thermal behavior of PCM/EG composites has not been investigated yet. In this work, three common PCMs (including myristic acid (MA), polyethylene glycol (PEG) and paraffin wax (PW)) were embedded in EG and three PCM/EG composites were obtained. As a result, capillary force between EG and PCMs supported encapsulation of PCMs in EG. PCM/EG composites had narrower phase change range while supercooling degree values were different when various PCMs were used. Besides, the hot and humid environment had a side effect on thermal energy storage of PCMs and PCM/EG composites. The inherent hydrophilicity of PCMs was essential for resistance against side effect of moisture on thermal energy storage.

12.
Int J Biol Macromol ; 234: 123780, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822281

RESUMO

Due to the complexity, heterogeneity and recalcitrant structure of lignin, the extraction of multifunctional lignin directly from lignocellulose is still a challenge. Here, a green and recyclable route was proposed to separate high-quality lignin and tailor its functionalities. Through tuning the components of deep eutectic solvent (DES) and separation procedures, DES extracted lignin (DESL) exhibited high purity of 99.6 %, yield of 83.2 % and phenolic hydroxyl content of 8.33 wt%. The results of FTIR and 13C NMR demonstrated that DESL possessed more oxygen-containing reactive groups compared with commercial lignin (CL), enabling DESL with more superior functional activities. DESL exhibited higher antioxidant activity with the DPPH capture rate of 73.2 %. Meanwhile, DESL showed strong bactericidal effects against E. coli (100 %) and S. aureus (100 %) due to higher phenolic hydroxyl content, which could destroy bacterial cell membranes and inhibit bacterial metabolism by interacting with phospholipid layer and protein. Additionally, DESL displayed strong UV absorption and could be blended with polyurethane to enhance UV shielding property of polyurethane composite film with >50 of UPF value. In summary, DES treatment is a suitable strategy for high-quality lignin separation, which opens a broad spectrum of possibilities for lignin valorization.


Assuntos
Lignina , Polifenóis , Lignina/química , Polifenóis/farmacologia , Escherichia coli , Poliuretanos , Staphylococcus aureus , Hidrólise , Solventes/química , Biomassa , Fenóis
13.
Small ; 19(4): e2205003, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36424182

RESUMO

Two-dimensional nanofluidic membranes offer great opportunities for developing efficient and robust devices for ionic/water-nexus energy harvesting. However, low counterion concentration and long pathway through limited ionic flux restrict their output performance. Herein, it is demonstrated that rapid diffusion kinetics can be realized in two-dimensional nanofluidic membranes by introducing in-plane holes across nanosheets, which not only increase counterion concentration but also shorten pathway length through the membranes. Thus, the holey membranes exhibited an enhanced performance relative to the pristine ones in terms of osmotic energy conversion. In particular, a biomimetic multilayered membrane sequentially assembled from pristine and holey sections offers an optimized combination of selectivity and permeability, therefore generating a power density up to 6.78 W m-2 by mixing seawater and river water, superior to the majority of the state-of-the-art lamellar nanofluidic membranes. This work highlights the importance of channel morphologies and presents a general strategy for effectively improving ion transport through lamellar membranes for high-performance nanofluidic devices.

14.
Int J Biol Macromol ; 226: 793-802, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36526062

RESUMO

Most amino acid molecules have good water solubility and are rich in functional groups, which makes them a promising derivatizing agent for cellulose. However, self-condensation of amino acids and low reaction efficiency always happen during esterification. Here, amino acid hydrochloride ([AA]Cl) is selected as raw material to synthesize cellulose amino acid ester (CAE). Based on TG-MS coupling technology, a significantly faster reaction rate of [AA]Cl compared to raw amino acid can be observed visually. CAE with the degree of substitution 0.412-0.516 is facilely synthesized under 130-170 °C for 10-50 min. Moreover, the effects of amounts of [AA]Cl agent, temperature, and time on the esterification are studied. The CAE can be well dissolved in 7 wt% NaOH aq., resulting in a 7.5 wt% dope. The rheological test of the dope demonstrated a shear-thinning behavior for Newtonian-like fluid, and a high gel temperature (41.7 °C). Further, the synthesized products show distinct antibacterial activity and the bacteriostatic reduction rate against E. coli can reach 99.5 %.


Assuntos
Anti-Infecciosos , Celulose , Celulose/química , Esterificação , Aminoácidos , Solubilidade , Escherichia coli , Ésteres
15.
Carbohydr Polym ; 296: 119969, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088008

RESUMO

Metal-organic frameworks (MOFs) and their derived powder catalysts are prone to agglomerate and difficult to recycle in water, thus resulting in their low utilization and secondary pollution in water treatment. Herein, a composite aerogel (CoFe0.8@NCNT@CA) loaded with bimetallic MOF-derived carbon nanotubes on cellulose aerogel was developed for activating peroxymonosulfate (PMS) to degrade tetracycline (TC). The CoFe0.8@NCNT@CA/PMS system exhibits an excellent TC removal rate (97.1 % TC removal within 20 min). The outstanding performance of the composite catalyst is closely related to the synergistic effect of bimetallic catalytic sites, graphitic N structure, and porous network. Interestingly, carbon nanotubes and cellulose in the composite catalyst form a semi-coated porous structure, which can effectively enhance the adhesion of carbon nanotubes and expose abundant active sites while ensuring mass transfer. This study provides a strategy for synthesizing novel composite aerogel with an excellent structure and physicochemical properties for water treatment.


Assuntos
Celulose , Nanotubos de Carbono , Catálise , Peróxidos/química
16.
Polymers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567064

RESUMO

High thermostability of phase change materials is the critical factor for producing phase change thermoregulated fiber (PCTF) by melt spinning. To achieve the production of PCTF from melt spinning, a composite phase change material with high thermostability was developed, and a sheath-core structure of PCTF was also developed from bicomponent melt spinning. The sheath layer was polyamide 6, and the core layer was made from a composite of polyethylene and paraffin. The PCTF was characterized by scanning electron microscopy (SEM), thermal analysis (TG), Fourier Transform Infra-Red (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and fiber strength tester. The results showed that the core material had a very high thermostability at a volatilization temperature of 235 °C, the PCTF had an endothermic and exothermic process in the temperature range of 20-30 °C, and the maximum latent heat of the PCTF reached 20.11 J/g. The tenacity of the PCTF gradually decreased and then reached a stable state with the increase of temperature from -25 °C to 80 °C. The PCTF had a tenacity of 343.59 MPa at 0 °C, and of 254.63 MPa at 25 °C, which fully meets the application requirements of fiber in textiles.

17.
Soft Matter ; 18(19): 3705-3712, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35502755

RESUMO

Photoinduced self-crosslinking technology is a great facilitator of 3D bioprinting of silk fibroin (SF) by allowing rapid solidification of a deliberately formulated SF-based photocrosslinkable bioink. An SF-based, photocrosslinked hydrogel was fabricated with tyramine-modified sodium carboxymethyl cellulose (CMC-Na) as a co-crosslinkable constituent and Ru(bpy)3Cl2 (Ru(II)) and potassium persulfate (KPS) as blue light photoinitiators. Photorheological studies demonstrated that the photocrosslinking and viscoelasticity of the composite could be tuned by varying the relative content of the two constituents. Xanthan gum (XG) was employed in formulating the SF-based photocrosslinkable bioink, and the improved rheological properties and printability were evidenced by the resulting tunable shear-thinning behavior and shear thixotropy. 3D SF-based hydrogel scaffolds with uniform pores with a size of approximately 550 µm × 1000 µm were constructed via extrusion-based printing and a simple 30 s post-photocrosslinking combined process. Furthermore, the CMC-Na incorporated 3D hydrogel scaffolds exhibited sufficient structural strength, adequate filament fineness, and tunable transparency, which shows a promising prospect in the application of tissue engineering and regenerative medicine.


Assuntos
Bioimpressão , Fibroínas , Bioimpressão/métodos , Fibroínas/química , Hidrogéis/química , Impressão Tridimensional , Seda , Engenharia Tecidual/métodos , Alicerces Teciduais/química
18.
ACS Appl Mater Interfaces ; 13(34): 40953-40963, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406736

RESUMO

"Green" solvent-dissolved cellulose enables functional reuse of waste cotton fabrics. This work will not only achieve high-value utilization of biomass but also overcome microplastic pollution. There is a significant challenge in the continuous meter-scale synthesis of sensing fibers for commercial applications with high productivity. Herein, waste cellulose fabrics was recycled by the NaOH/urea system to produce regenerated cellulose (RC) and then cornlike polyaniline (PANI) was anchored on the RC fibers by in situ polymerization of aniline through continuous meter-scale wet-spinning. In our findings, the morphologies and possible growth of PANI layers on the RC surface can be tailored by various ammonium persulfate (APS) contents in a coagulation bath. Especially, composite fibers (PC0.5) exhibited superior electrical conductivity and highly sensitive responsiveness to organic vapors and human motions including exhalation/inhalation, finger, and wrist joints. Further, the possible sensing mechanism of cornlike PC0.5 has been proposed, and its GF value is 23.8. This study realized the conversion from cheap waste fibers to high-value conductive fibers with excellent performances for multifunctional wearable sensors and energy devices via a simple and "green" method.

19.
Materials (Basel) ; 14(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209015

RESUMO

P-aminophenol is a hazardous environmental pollutant that can remain in water in the natural environment for long periods due to its resistance to microbiological degradation. In order to decompose p-aminophenol in water, manganese oxide/polytetrafluoroethylene (PTFE) hollow fiber membranes were prepared. MnO2 and Mn3O4 were synthesized and stored in PTFE hollow fiber membranes by injecting MnSO4·H2O, KMnO4, NaOH, and H2O2 solutions into the pores of the PTFE hollow fiber membrane. The resultant MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were characterized using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermal analysis (TG). The phenol catalytic degradation performance of the hollow fiber membranes was evaluated under various conditions, including flux, oxidant content, and pH. The results showed that a weak acid environment and a decrease in flux were beneficial to the catalytic degradation performance of manganese oxide/PTFE hollow fiber membranes. The catalytic degradation efficiencies of the MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 70% and 37% when a certain concentration of potassium monopersulfate (PMS) was added, and the catalytic degradation efficiencies of MnO2/PTFE and Mn3O4/PTFE hollow fiber membranes were 50% and 35% when a certain concentration of H2O2 was added. Therefore, the manganese oxide/PTFE hollow fiber membranes represent a good solution for the decomposition of p-aminophenol.

20.
Biosens Bioelectron ; 191: 113467, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34218176

RESUMO

The conventional skin sensor detection of human physiological signals can be an effective method for disease diagnosis and health monitoring, but the poor biocompatibility, low sensitivity and complex design largely limit their applications. Developing natural nanofiller-reinforced composites as strain biosensors is an appealing solution to reduce environmental impacts and overcome technical bottleneck. Herein, a versatile nature skin-inspired composite film as flexible strain biosensor was developed based on cellulose nanocrystals-polyaniline (CNC-PANI) composites by utilizing their percolated conductive network in polyvinyl alcohol (PVA) matrix. The composite electronic skin showed robust mechanical strength (50.62 MPa) and high sensitivity (Gauge Factor = 11.467) with easy water-induced self-healing abilities. Moreover, we investigated the functioning mechanism of percolated network and the sensory behavior determined by CNC nanocomposite alignment. The percolation threshold of CNC-polyaniline (PANI) was determined at 4.278% and 5% CNC-PANI composite film shows the best overall sensing property. It was also discovered that the sensitivity of this type of conductive-filler electronic skin can be divided into two separate regions at different strain range due to its percolated network. With films prepared by dry casting and dip coating, the alignment of CNC-PANI also contributes to this unique change in electrical property. Generally, our results demonstrated the mechanism and tunability of conductive nanofiller-based composite strain biosensors as a potential alternative to commercial synthetic sensors.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Nanopartículas , Celulose , Condutividade Elétrica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA