Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940890

RESUMO

Cardiac amyloidosis (CA) is characterized by the deposition of amyloid fibrils within the myocardium, resulting in a restrictive physiology. Although microvascular dysfunction is a common feature, it is difficult to assess. This study aimed to explore myocardial transit time (MyoTT) by cardiovascular magnetic resonance (CMR) as a potential novel parameter of microcirculatory dysfunction in CA. This prospective study enrolled 20 CA patients and 20 control subjects. CMR acquisition included cine imaging, pre- and post-contrast T1 mapping, and MyoTT assessment, which was calculated from the time delay in contrast agent arrival between the aortic root and coronary sinus (CS). Compared to the control group, patients with CA exhibited significantly reduced left ventricular (LV) ejection fraction and myocardial strain, an increase in LV global peak wall thickness (LVGPWT), extracellular volume fraction (ECV), and prolonged MyoTT (14.4 ± 3.8 s vs. 7.7 ± 1.5 s, p < 0.001). Moreover, patients at Mayo stage III had a significantly longer MyoTT compared to those at stage I/II. MyoTT showed a positive correlation with the ECV, LVGPWT, and LV global longitudinal strain (LV-GLS) (p < 0.05). The area under the curve (AUC) for MyoTT was 0.962, demonstrating diagnostic performance comparable to that of the ECV (AUC 0.995) and LV-GLS (AUC 0.950) in identifying CA. MyoTT is significantly prolonged in patients with CA, correlating with fibrosis markers, remodeling, and dysfunction. As a novel parameter of coronary microvascular dysfunction (CMD), MyoTT has the potential to be an integral biomarker in multiparametric CMR assessment of CA.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38739517

RESUMO

In point cloud, some regions typically exist nodes from multiple categories, i.e., these regions have both homophilic and heterophilic nodes. However, most existing methods ignore the heterophily of edges during the aggregation of the neighborhood node features, which inevitably mixes unnecessary information of heterophilic nodes and leads to blurred boundaries of segmentation. To address this problem, we model the point cloud as a homophilic-heterophilic graph and propose a graph regulation network (GRN) to produce finer segmentation boundaries. The proposed method can adaptively adjust the propagation mechanism with the degree of neighborhood homophily. Moreover, we build a prototype feature extraction module, which is utilised to mine the homophily features of nodes from the global prototype space. Theoretically, we prove that our convolution operation can constrain the similarity of representations between nodes based on their degree of homophily. Extensive experiments on fully and weakly supervised point cloud semantic segmentation tasks demonstrate that our method achieves satisfactory performance. Especially in the case of weak supervision, that is, each sample has only 1%-10% labeled points, the proposed method has a significant improvement in segmentation performance.

3.
Sci Rep ; 14(1): 5071, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429338

RESUMO

The Ebinur Lake Basin is an ecologically sensitive area in an arid region. Investigating its land use and land cover (LULC) change and assessing and predicting its ecosystem service value (ESV) are of great importance for the stability of the basin's socioeconomic development and sustainable development of its ecological environment. Based on LULC data from 1990, 2000, 2010, and 2020, we assessed the ESV of the Ebinur Lake Basin and coupled the grey multi-objective optimization model with the patch generation land use simulation model to predict ESV changes in 2035 under four scenarios: business-as-usual (BAU) development, rapid economic development (RED), ecological protection (ELP), and ecological-economic balance (EEB). The results show that from 1990 to 2020, the basin was dominated by grassland (51.23%) and unused land (27.6%), with a continuous decrease in unused land and an increase in cultivated land. In thirty years, the total ESV of the study area increased from 18.62 billion to 67.28 billion yuan, with regulation and support services being the dominant functions. By 2035, cultivated land increased while unused land decreased in all four scenarios compared with that in 2020. The total ESV in 2035 under the BAU, RED, ELP, and EEB scenarios was 68.83 billion, 64.47 billion, 67.99 billion, and 66.79 billion yuan, respectively. In the RED and EEB scenarios, ESV decreased by 2.81 billion and 0.49 billion yuan, respectively. In the BAU scenario, provisioning and regulation services increased by 6.05% and 2.93%, respectively. The ELP scenario, focusing on ecological and environmental protection, saw an increase in ESV for all services. This paper can assist policymakers in optimizing land use allocation and provide scientific support for the formulation of land use strategies and sustainable ecological and environmental development in the inland river basins of arid regions.

4.
Front Endocrinol (Lausanne) ; 15: 1335899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510696

RESUMO

Objective: This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods: T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results: The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion: In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.


Assuntos
Cardiomiopatias , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/patologia , Miocárdio/patologia , Coração , Cardiomiopatias/patologia , Fibrose , Espectroscopia de Ressonância Magnética
5.
J Imaging Inform Med ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388867

RESUMO

The aim of this study is to assess the feasibility of compressed sensing (CS) acceleration methods compared to conventional segmented cine (Seg) cardiac magnetic resonance (CMR) for evaluating left ventricular (LV) function and strain by feature tracking (FT). In this prospective study, 45 healthy volunteers underwent CMR imaging used Seg, threefold (CS3), fourfold (CS4), and eightfold (CS8) CS acceleration. Cine images were scored for quality (1-5 scale). LV volumetric and functional parameters and global longitudinal (GLS), circumferential (GCS), and radial strains (GRS) were quantified. LV volumetric and functional parameters exhibited no differences between Seg and all CS cines (all P > 0.05). The strains were similar for Seg, CS3, and CS4 (all P > 0.05). Similarly, no significant differences were observed in GRS and GCS between Seg and CS8 (all P > 0.05), but the global longitudinal strain was significantly lower for CS8 versus Seg (P < 0.001). Image quality declined with CS acceleration, especially in long-axis views with CS8. CS cine MRI at acceleration factor 4 maintained good image quality and accurate measurements of LV function and strain, although there was a slight reduction in the quality of long-axis images and GLS with CS8. CS acceleration up to a factor of 4 enabled fast CMR evaluations, making it suitable for clinical use.

6.
PLoS One ; 19(2): e0297860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330009

RESUMO

The ecological security of oasis cities in arid and semi-arid regions is highly susceptible to changes in regional landscape patterns and the degree of coordination between human activities and the environment. At the same time, the ecological security of urban landscapes also profoundly affects the success of regional economic and environmental coordination and development. This study is based on land use data from 1990, 2000, 2010, and 2020, as well as land use data from the natural development scenario (NLD), economic development scenario (ECD), ecological development scenario (ELD) and ecological-economic development scenario (EED) simulated by the patch-generating land use simulation (PLUS) model in 2030. From the perspective of production-living-ecological land (PLEL), it analyzes the changes in the past and future landscape ecological security and coupling coordination characteristics of Bole. The results show that from 1990 to 2020, Bole was mainly dominated by grassland ecological land (GEL) and other ecological land (OEL), accounting for a total proportion of 69.51%, with a large increase in production and living land area; the average value of landscape ecological risk is decreasing, and the landscape ecological security of Bole is developing towards benignity; the area of highly coupled coordination zone is decreasing continuously, while that of basic coordination zone and moderate coordination zone is increasing continuously. Under the 2030 EED scenario, the overall changes in various types of land use are not significant, and the average value of landscape ecological risk is the smallest, but it is higher than that in 2020 as a whole; under EED scenario, the area of highly coordinated zone and moderate coordinated zone is the largest among four scenarios, and the best coupling coordination level among the four scenarios. Landscape ecological security and its coupling coordination will be affected by land use patterns. Optimizing regional land use patterns is of great significance for improving urban landscape ecological security and sustainable high-quality development.


Assuntos
Ecologia , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Cidades , Simulação por Computador , China
7.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 14975-14989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37490384

RESUMO

Graph convolutional neural networks can effectively process geometric data and thus have been successfully used in point cloud data representation. However, existing graph-based methods usually adopt the K-nearest neighbor (KNN) algorithm to construct graphs, which may not be optimal for point cloud analysis tasks, owning to the solution of KNN is independent of network training. In this paper, we propose a novel graph structure learning convolutional neural network (GSLCN) for multiple point cloud analysis tasks. The fundamental concept is to propose a general graph structure learning architecture (GSL) that builds long-range and short-range dependency graphs. To learn optimal graphs that best serve to extract local features and investigate global contextual information, respectively, we integrated the GSL with the designed graph convolution operator under a unified framework. Furthermore, we design the graph structure losses with some prior knowledge to guide graph learning during network training. The main benefit is that given labels and prior knowledge are taken into account in GSLCN, providing useful supervised information to build graphs and thus facilitating the graph convolution operation for the point cloud. Experimental results on challenging benchmarks demonstrate that the proposed framework achieves excellent performance for point cloud classification, part segmentation, and semantic segmentation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35560073

RESUMO

Graph neural networks (GNNs) have made great progress in graph-based semi-supervised learning (GSSL). However, most existing GNNs are confronted with the oversmoothing issue that limits their expressive ability. A key factor that leads to this problem is the excessive aggregation of information from other classes when updating the node representation. To alleviate this limitation, we propose an effective method called GUIded Dropout over Edges (GUIDE) for training deep GNNs. The core of the method is to reduce the influence of nodes from other classes by removing a certain number of inter-class edges. In GUIDE, we drop edges according to the edge strength, which is defined as the time an edge acts as a bridge along the shortest path between node pairs. We find that the stronger the edge strength, the more likely it is to be an inter-class edge. In this way, GUIDE can drop more inter-class edges and keep more intra-class edges. Therefore, nodes in the same community or class are more similar, whereas different classes are more separated in the embedded space. In addition, we perform some theoretical analysis of the proposed method, which explains why it is effective in alleviating the oversmoothing problem. To validate its rationality and effectiveness, we conduct experiments on six public benchmarks with different GNNs backbones. Experimental results demonstrate that GUIDE consistently outperforms state-of-the-art methods in both shallow and deep GNNs.

9.
Nature ; 602(7895): 68-72, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110757

RESUMO

Interactions in many-body physical systems, from condensed matter to high-energy physics, lead to the emergence of exotic particles. Examples are mesons in quantum chromodynamics and composite fermions in fractional quantum Hall systems, which arise from the dynamical coupling between matter and gauge fields1,2. The challenge of understanding the complexity of matter-gauge interaction can be aided by quantum simulations, for which ultracold atoms offer a versatile platform via the creation of artificial gauge fields. An important step towards simulating the physics of exotic emergent particles is the synthesis of artificial gauge fields whose state depends dynamically on the presence of matter. Here we demonstrate deterministic formation of domain walls in a stable Bose-Einstein condensate with a gauge field that is determined by the atomic density. The density-dependent gauge field is created by simultaneous modulations of an optical lattice potential and interatomic interactions, and results in domains of atoms condensed into two different momenta. Modelling the domain walls as elementary excitations, we find that the domain walls respond to synthetic electric field with a charge-to-mass ratio larger than and opposite to that of the bare atoms. Our work offers promising prospects to simulate the dynamics and interactions of previously undescribed excitations in quantum systems with dynamical gauge fields.

10.
Nature ; 592(7856): 708-711, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33911270

RESUMO

Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing1-3. For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules4,5. Here we report the preparation of two-dimensional Bose-Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance6. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(±30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas7-9. In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted10,11, such as the A phase of 3He.

11.
Phys Rev Lett ; 125(18): 183003, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33196257

RESUMO

We show that jet emission from a Bose condensate with periodically driven interactions, also known as "Bose fireworks", contains essential information on the condensate wave function, which is difficult to obtain using standard detection methods. We illustrate the underlying physics with two examples. When condensates acquire phase patterns from external potentials or from vortices, the jets display novel substructure, such as oscillations or spirals, in their correlations. Through a comparison of theory, numerical simulations, and experiments, we show how one can quantitatively extract the phase and the helicity of a condensate from the emission pattern. Our work, demonstrating the strong link between jet emission and the underlying quantum system, bears on the recent emphasis on jet substructure in particle physics.

12.
Neural Netw ; 132: 394-404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33010715

RESUMO

This study builds a fully deconvolutional neural network (FDNN) and addresses the problem of single image super-resolution (SISR) by using the FDNN. Although SISR using deep neural networks has been a major research focus, the problem of reconstructing a high resolution (HR) image with an FDNN has received little attention. A few recent approaches toward SISR are to embed deconvolution operations into multilayer feedforward neural networks. This paper constructs a deep FDNN for SISR that possesses two remarkable advantages compared to existing SISR approaches. The first improves the network performance without increasing the depth of the network or embedding complex structures. The second replaces all convolution operations with deconvolution operations to implement an effective reconstruction. That is, the proposed FDNN only contains deconvolution layers and learns an end-to-end mapping from low resolution (LR) to HR images. Furthermore, to avoid the oversmoothness of the mean squared error loss, the trained image is treated as a probability distribution, and the Kullback-Leibler divergence is introduced into the final loss function to achieve enhanced recovery. Although the proposed FDNN only has 10 layers, it is successfully evaluated through extensive experiments. Compared with other state-of-the-art methods and deep convolution neural networks with 20 or 30 layers, the proposed FDNN achieves better performance for SISR.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA