RESUMO
Sialylation catalysed by sialyltransferase 7A (SIAT7A) plays a role in the development of cardiac hypertrophy. However, the regulatory mechanisms upstream of SIAT7A in this context remain poorly elucidated. Previous study demonstrated that KLF4 activates the SIAT7A gene in ischemic myocardium by binding to its promoter region. Nevertheless, the potential involvement of KLF4 in regulating SIAT7A expression in Ang II-induced hypertrophic cardiomyocytes remains uncertain. This study seeks to deepen the underlying mechanisms of the KLF4 and SIAT7A interaction in the progression of Ang II-induced cardiac hypertrophy. The results showed a concurrent increase in SIAT7A and KLF4 levels in hypertrophic myocardium of essential hypertension patients and in hypertrophic cardiomyocytes stimulated by Ang II. In vitro experiments revealed that reducing KLF4 levels led to a decrease in both SIAT7A synthesis and Sialyl-Tn antigen expression, consequently inhibiting Ang II-induced cardiomyocyte hypertrophy. Intriguingly, reducing SIAT7A levels also resulted in decreased KLF4 expression and suppression cardiomyocyte hypertrophy. Consistent with this, elevating SIAT7A levels increased KLF4 expression and exacerbated cardiomyocyte hypertrophy in both in vivo and in vitro experiments. Additionally, a time-course analysis indicated that KLF4 expression preceded that of SIAT7A. Luciferase reporter assays further confirmed that modulating SIAT7A levels directly influenced the transcriptional activity of KLF4 in cardiomyocytes. In summary, KLF4 expression is upregulated in cardiomyocytes treated with Ang II, which subsequently induces the expression of SIAT7A. The elevated levels of SIAT7A, in turn, enhance the transcription of KLF4. These findings suggest a positive feedback loop between KLF4 and SIAT7A-Sialyl-Tn, ultimately promoting Ang II-induced cardiac hypertrophy.
Assuntos
Angiotensina II , Cardiomegalia , Fator 4 Semelhante a Kruppel , Miócitos Cardíacos , Sialiltransferases , Angiotensina II/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/patologia , Animais , Sialiltransferases/metabolismo , Sialiltransferases/genética , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Ratos , Regulação da Expressão GênicaRESUMO
Objective: Extensive research has consistently shown the beneficial impact of fruit consumption on overall health. While some studies have proposed a potential association between fruit consumption and hypertension management, the influence of fruit consumption on mortality rates among hypertensive individuals remains uncertain. Consequently, aim of this study is to evaluate whether fruit consumption is associated with all-cause mortality among hypertensive patients. Methods: Data were obtained from the National Health and Nutrition Examination Survey (NHANES), conducted between 2003 and 2006. Ten-year follow-up data from the National Death Index (NDI) were used to assess all-cause mortality. Cox proportional hazard model was utilized to explore the impact of fruit intake on all-cause mortality among hypertensive individuals. Results: The study included a cohort of 2,480 patients diagnosed with hypertension, and during the follow-up period, a total of 658 deaths from various causes were recorded. The COX regression analysis demonstrated that hypertensive patients who consumed apples three to six times per week exhibited a significantly reduced risk of all-cause mortality (HR = 0.60, 95%CI: 0.45-0.78, p < 0.001) in comparison to those who consumed apples less than once per month. Likewise, consuming bananas three to six times per week also led to a comparable outcome (HR = 0.76, 95%CI: 0.59-0.97, p = 0.027). Moreover, Combined consumption of bananas and apples three to six times per week exhibited a noteworthy decrease in all-cause mortality (HR = 0.57, 95%CI: 0.39-0.84, p = 0.005) when compared to individuals who consumed these fruits less frequently. Conversely, no significant association was found between the consumption of other fruits, including pears, pineapples, and grapes, and all-cause mortality. Conclusion: The study discovered that moderate consumption of apples and bananas was associated with a reduced risk of all-cause mortality in patients with hypertension.
RESUMO
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) is a series of artificial compounds which is associated with human health. However, there are few studies on the relationship between PFASs and hypertension. In this study, we examined the association between different kinds of PFASs and hypertension. Multivariable logistic regression and subgroup analysis were adopted to assess the associations between PFASs and hypertension. Spline smoothing plots and linear regression were used to assess the relationship between PFASs and blood pressure. We found a positive association between serum PFDeA concentrations and the prevalence of hypertension after fully adjusting confounders (OR = 1.2, P = 0.01), but other types of PFASs showed no positive results. Subgroup analysis stratified by ethnicity showed there was a stronger relationship among non-Hispanics than Hispanics. Serum PFDeA concentrations were positively associated with systolic pressure (ß = 0.7, P< 0.01) and diastolic blood pressure (ß = 0.8, P< 0.01) among non-Hispanics who did not take antihypertensive drugs. This study showed that PFDeA exposure was associated with hypertension in Americans who identify as non-Hispanic. There was a positive association between PFDeA and blood pressure in non-Hispanic Americans who did not take antihypertensive drugs.
Assuntos
Fluorocarbonos , Hipertensão , Humanos , Anti-Hipertensivos/efeitos adversos , Inquéritos Nutricionais , Hipertensão/epidemiologia , Pressão SanguíneaRESUMO
Oleanolic acid (3ß-hydroxyolean-12-en-28-oic acid, OA) is a kind of pentacyclic triterpene, which widely distributes in nature. OA possesses a powerful anti-cancer effect; however, its low solubility limits its bioavailability and application. In this study, a new OA derivative, K73-03, was used to determine its effect on liver cancer cells and detailed molecular mechanisms. Here, we show that K73-03 may lead to the disorder of mitochondria in HepG2 cells, leading to excessive ROS production and apoptosis in cells. Meanwhile, K73-03 could induce cell apoptosis by inhibiting JAK2/STAT3 pathway and NF-κB/P65 pathway. Collectively, this study may provide a preliminary basis for further cancer treatment of hepatocellular carcinoma.
RESUMO
Phosphocreatine (PCr) has been shown to have a cardio-protective effect during cardiopulmonary resuscitation (CPR). However, little is known about its impact on atherosclerosis. In this study, we first evaluated the pharmacological effects of PCr on antioxidative defenses and mitochondrial protection against hydrogen peroxide (H2O2) induced human umbilical vascular endothelial cells (HUVECs) damage. Then we investigated the hypolipidemic and antioxidative effects of PCr on hyperlipidemic rat model. Via in vitro studies, H2O2 significantly reduced cell viability and increased apoptosis rate of HUVECs, while pretreatment with PCr abolished its apoptotic effect. PCr could reduce the generation of ROS induced by H2O2. Moreover, PCr could increase the activity of SOD and the content of NO, as well as decrease the activity of LDH and the content of MDA. PCr could also antagonize H2O2-induced up-regulation of Bax, cleaved-caspase3, cleaved-caspase9, and H2O2-induced down-regulation of Bcl-2 and p-Akt/Akt ratio. In addition, PCr reduced U937 cells' adhesion to H2O2-stimulated HUVECs. Via in vivo study, PCr could decrease MDA, TC, TG and LDL-C levels in hyperlipidemic rats. Finally, different-concentration PCr could increase the leaching of TC, HDL, and TG from fresh human atherosclerotic plaques. In conclusion, PCr could suppress H2O2-induced apoptosis in HUVECs and reduce hyperlipidemia through inhibiting ROS generation and modulating dysfunctional mitochondrial system, which might be an effective new therapeutic strategy to further prevent atherosclerosis.
Assuntos
Aterosclerose , Células Endoteliais , Humanos , Animais , Ratos , Peróxido de Hidrogênio , Fosfocreatina/farmacologia , Fosfocreatina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Apoptose , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controleRESUMO
Recent references discovered that lncRNAs acted roles in malignant cancer development. However, the role of MAFG-AS1 in acute myeloid leukemia (AML) development remains unknown. MAFG-AS1 and miR-147b were determined in AML cells and specimens using qRT-PCR assay. Cell proliferation was detected by CCK-8 analysis and flow cytometry was carried out to measure cell cycle. Luciferase reporter analysis was done to determine the mechanism of MAFG-AS1 and miR-147b. We noted that MAFG-AS1 was overexpressed in AML cells and in serum and bone narrow from AML compared with normal controls specimen. Elevated expression of MAFG-AS1 increased cell growth, cycle and EMT in AML cell HL-60 cell. MAFG-AS1 sponged miR-147b expression in HL-60 cell. Moreover, miR-147b was downregulated in AML cells and in serum and bone narrow from AML compared with normal control specimen. miR-147b was negatively correlated with MAFG-AS1 in the serum and bone narrow of AML cases. We illustrated that HOXA9 was one target of miR-147b and ectopic expression of MAFG-AS1 enhanced HOXA9 expression HL-60 cell. Forced expression of MAFG-AS1 induced cell growth, cycle, and EMT via promoting HOXA9. These data illustrated that MAFG-AS1 acted as one oncogenic gene and accelerated AML progression via modulating miR-147b/HOXA9 axis.
Assuntos
Leucemia Mieloide Aguda , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Movimento Celular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas Repressoras/genética , Fator de Transcrição MafG/genéticaRESUMO
Acute leukemia is a hematological malignant tumor. Long non-coding RNA urothelial cancer-associated 1 (UCA1) is involved in the chemo-resistance of diverse cancers, but it is unclear whether UCA1 is associated with the sensitivity of acute leukemia cells to daunorubicin (DNR). DNR (100 nM) was selected for functional analysis. The viability, cell cycle progression, apoptosis, and invasion of treated acute leukemia cells (HL-60 and U-937) were evaluated by cell counting kit-8 (CCK-8) assay, flow cytometry assay, or transwell assay. Protein levels were detected with Western blot analysis. Expression patterns of UCA1 and miR-613 were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between UCA1 and microRNA-613 (miR-613) was verified by dual-luciferase reporter assay. We observed that UCA1 expression was elevated in HL-60 and U-937cells. DNR constrained viability, cell cycle progression, invasion, and facilitated apoptosis of HL-60 and U-937 cells in a dose-dependent manner, but these impacts mediated by DNR were reverted after UCA1 overexpression. MiR-613 was down-regulated in HL-60 and U-937 cells, and UCA1 was verified as a miR-613 sponge. MiR-613 inhibitor reversed DNR treatment-mediated effects on viability, cell cycle progression, apoptosis, and invasion of HL-60 and U-937 cells, but these impacts mediated by miR-613 inhibitor were counteracted after UCA1 inhibition. Notably, the inactivation of the PI3K/AKT pathway caused by DNR treatment was reversed after miR-613 inhibitor introduction, but this influence mediated by miR-613 inhibitor was offset after UCA1 knockdown. In conclusion, UCA1 up-regulation facilitated the resistance of acute leukemia cells to DNR via the PI3K/AKT pathway by sponging miR-613.
Assuntos
Antibióticos Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia/tratamento farmacológico , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Células HL-60 , Humanos , Leucemia/enzimologia , Leucemia/genética , Leucemia/patologia , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , Transdução de Sinais , Células U937RESUMO
Background: Long noncoding RNA (lncRNA) small nucleolar RNA host gene 6 (SNHG6) has been reported to be an oncogene in a variety of cancers. However, the role of SNHG6 and its associated mechanisms in Wilms' tumor progression remain largely unknown. Methods: The expression of SNHG6, microRNA-429 (miR-429), and FGF receptor substrates 2 (FRS2) messenger RNA (mRNA) was detected by quantitative real-time polymerase chain reaction. Cell proliferation was analyzed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and plate colony assay. The apoptosis was assessed by flow cytometry. Cell glycolytic metabolism was analyzed through detecting the lactate dehydrogenase activity, glucose uptake, lactate production, and ATP level. The target relationship between miR-429 and SNHG6 or FRS2 was predicted by miRcode or Starbase and then validated by dual-luciferase reporter assay and RNA pull-down assay. Murine xenograft model was established to validate the function of SNHG6 in vivo. Results: The level of SNHG6 was elevated in Wilms' tumor tissues and cells, and SNHG6 played an oncogenic role to promote the proliferation and glycolysis and restrain the apoptosis of Wilms' tumor cells. MiR-429 was identified as a target of SNHG6, and miR-429 interference partly reversed the inhibitory effects induced by SNHG6 silencing on the malignant behaviors of Wilms' tumor cells. FRS2 mRNA bound to miR-429 in Wilms' tumor cells. SNHG6 upregulated the expression of FRS2 through acting as a sponge of miR-429. MiR-429-induced influences in Wilms' tumor cells were largely counteracted by the overexpression of FRS2. SNHG6 silencing suppressed the Wilms' tumor growth through miR-429/FRS2 axis in vivo. Conclusion: SNHG6 accelerated Wilms' tumor progression through regulating miR-429/FRS2 signaling in vitro and in vivo.
RESUMO
AIMS: Sialylation is up-regulated during the development of cardiac hypertrophy. Sialyltransferase7A (Siat7A) mRNA is consistently over-expressed in the hypertrophic left ventricle of hypertensive rats independently of genetic background. The aims of this study were: (i) to detect the Siat7A protein levels and its roles in the pathological cardiomyocyte hypertrophy; (ii) to elucidate the effect of sialylation mediated by Siat7A on the transforming-growth-factor-ß-activated kinase (TAK1) expression and activity in cardiomyocyte hypertrophy; and (iii) to clarify hypoxia-inducible factor 1 (HIF-1) expression was regulated by Siat7A and transactivated TAK1 expression in cardiomyocyte hypertrophy. METHODS AND RESULTS: Siat7A protein level was increased in hypertrophic cardiomyocytes of human and rats subjected to chronic infusion of angiotensin II (ANG II). Delivery of adeno-associated viral (AAV9) bearing shRNA against rat Siat7A into the left ventricular wall inhibited ventricular hypertrophy. Cardiac-specific Siat7A overexpression via intravenous injection of an AAV9 vector encoding Siat7A under the cardiac troponin T (cTNT) promoter aggravated cardiac hypertrophy in ANG II-treated rats. In vitro, Siat7A knockdown inhibited the induction of Sialyl-Tn (sTn) antigen and cardiomyocyte hypertrophy stimulated by ANG II. Mechanistically, ANG II induced the activation of TAK1-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling in parallel to up-regulation of Siat7A in hypertrophic cardiomyocytes. Siat7A knockdown inhibited activation of TAK1-NF-κB pathway. Interestingly, HIF-1α expression was increased in cardiomyocytes stimulated by ANG II but decreased after Siat7A knockdown. HIF-1α knockdown efficiently decreased TAK1 expression. ChIP and luciferase assays showed that HIF-1α transactivated the TAK1 promoter region (nt -1285 to -1274 bp) in the cardiomyocytes following ANG II stimulus. CONCLUSION: Siat7A was up-regulated in hypertrophic myocardium and promoted cardiomyocyte hypertrophy via activation of the HIF-1α-TAK1-NF-κB pathway.
Assuntos
Angiotensina II , Hipertrofia Ventricular Esquerda/enzimologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Miócitos Cardíacos/enzimologia , Sialiltransferases/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Humanos , Hipertrofia Ventricular Esquerda/induzido quimicamente , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MAP Quinase Quinase Quinases/genética , Masculino , Miócitos Cardíacos/patologia , Interferência de RNA , Ratos Wistar , Sialiltransferases/genética , Transdução de SinaisRESUMO
The NOD-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively.
Assuntos
Colesterol/metabolismo , Células Espumosas/citologia , Células Espumosas/imunologia , Inflamassomos/imunologia , Lipoproteínas LDL/imunologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Colesterol/imunologia , Humanos , Inflamassomos/antagonistas & inibidores , Macrófagos/citologia , Células THP-1RESUMO
Ginsenoside Re (GRe) exerts diverse effects. Based on our observations, the present study was designed to investigate GRe-exerted bidirectional regulation (BR) on the contractility of isolated jejunal segment. Six pairs of different low and high contractile states of rat jejunal segment were established and used in the study. Stimulatory effects on the contractility of jejunal segment were exerted by GRe (10.0 µM) in all 6 low contractile states, and inhibitory effects were exerted in all 6 high contractile states, indicating that GRe exerted BR on the contractility of jejunal segment. The effects of GRe on the phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK) and MLCK mRNA expression in jejunal segment in low and high contractile states were also bidirectional. GRe-exerted BR was abolished in the presence of neurotoxin tetrodotoxin or Ca2+ channel blocker verapamil or c-Kit receptor tyrosine kinase inhibitor imatinib. Atropine blocked the stimulatory effects of GRe on jejunal contractility in low-Ca2+-induced low contractile state; phentolamine, propranolol and l-NG-nitro-arginine blocked the inhibitory effects in high-Ca2+-induced high contractile state, respectively. In summary, GRe-exerted BR depends on jejunal contractile state and requires the presence of enteric nervous system, Ca2+, and interstitial cells of Cajal; the stimulatory effects of GRe on jejunal contractility are related to cholinergic stimulation and inhibitory effects are related to adrenergic activation and nitric oxide relaxing mechanisms.
Assuntos
Ginsenosídeos/farmacologia , Jejuno/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Animais , Sistema Nervoso Entérico/fisiologia , Células Intersticiais de Cajal/fisiologia , Jejuno/inervação , Jejuno/metabolismo , Jejuno/fisiologia , Masculino , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/metabolismo , Fosforilação , Ratos , Ratos Sprague-DawleyRESUMO
AIM: To characterize the dual effects of deslanoside on the contractility of jejunal smooth muscle. METHODS: Eight pairs of different low and high contractile states of isolated jejunal smooth muscle fragment (JSMF) were established. Contractile amplitude of JSMF in different low and high contractile states was selected to determine the effects of deslanoside, and Western blotting analysis was performed to measure the effects of deslanoside on myosin phosphorylation of jejunal smooth muscle. RESULTS: Stimulatory effects on the contractility of JSMF were induced (45.3% ± 4.0% vs 87.0% ± 7.8%, P < 0.01) by deslanoside in 8 low contractile states, and inhibitory effects were induced (180.6% ± 17.8% vs 109.9% ± 10.8%, P < 0.01) on the contractility of JSMF in 8 high contractile states. The effect of deslanoside on the phosphorylation of myosin light chain of JSMF in low (78.1% ± 4.1% vs 96.0% ± 8.1%, P < 0.01) and high contractile state (139.2% ± 8.5% vs 105.5 ± 7.34, P < 0.01) was also bidirectional. Bidirectional regulation (BR) was abolished in the presence of tetrodotoxin. Deslanoside did not affect jejunal contractility pretreated with the Ca(2+) channel blocker verapamil or in a Ca(2+)-free assay condition. The stimulatory effect of deslanoside on JSMF in a low contractile state (low Ca(2+) induced) was abolished by atropine. The inhibitory effect of deslanoside on jejunal contractility in a high contractile state (high Ca(2+) induced) was blocked by phentolamine, propranolol and L-NG-nitro-arginine, respectively. CONCLUSION: Deslanoside-induced BR is Ca(2+) dependent and is related to cholinergic and adrenergic systems when JSMF is in low or high contractile states.
Assuntos
Deslanosídeo/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Antagonistas Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Jejuno/inervação , Jejuno/metabolismo , Antagonistas Muscarínicos/farmacologia , Músculo Liso/inervação , Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Fatores de TempoRESUMO
OBJECTIVE: To investigate the effect of AT1 receptor on the changes of tyrosine hydroxylase-immunoreactivity (TH-IR) in rostral ventrolateral medulla (RVLM) induced by brain cholinergic stimuli in rats. METHODS: Male SD rats were randomly divided into 4 groups: NS + CBC group, Los + CBC group, Los + NS group and NS + NS group. AT1 was blocked by pretreatment of 20 µg losartan in Los + CBC and Los + NS groups; intracerebroventricular injection of 0.5 µg carbachol was used for cholinergic stimuli in NS + CBC and Los + CBC groups; normal saline (NS) was used for control. The output amount of natrium in kidney, glomerular filtration rate (GFR) and renal plasma flow (PRF) were observed. The changes of TH-IR in the RVLM were observed by immunohistochemistry. RESULT: In NS + CBC group carbachol induced potent natriuresis, after pretreatment of losartan the natriuretic effect was partially inhibited in Los + CBC group. Both the number and optical density of TH-IR positive neurons in NS + CBC group were markedly increased than those in NS + NS group (P < 0.05); while those in Los + CBC group were significantly lower than those in NS+CBC group (P < 0.05). Intracerebroventricular injection of carbachol and losartan had no effect on GFR and RPF(P > 0.05). CONCLUSION: The results suggest that cholinergic stimuli can induce potent natriuresis and increase the activity of adrenergic neurons in the RVLM; the above effects can be down regulated by blockade of brain AT1 receptor.
Assuntos
Bulbo/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Carbacol/administração & dosagem , Carbacol/farmacologia , Antagonismo de Drogas , Taxa de Filtração Glomerular/efeitos dos fármacos , Losartan/farmacologia , Masculino , Bulbo/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-DawleyAssuntos
Encéfalo/metabolismo , Células Epiteliais/metabolismo , Ventrículos Laterais/efeitos dos fármacos , Natriurese , Acetilcolina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Agonistas Colinérgicos/farmacologia , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
AIM AND METHODS: In the present study, we investigated the TH immunoreactivity and the expression of angiotensin AT1 receptor in locus coeruleus after intracerebroventricular (i. c. v.) injection of carbachol in conscious SD rats with immunohistochemistry. Meanwhile the effects of blocking AT1 receptor were also observed. RESULTS: Both mean optical density and number of TH and AT1 immunoreactive positive neurons were markedly increased in locus coeruleus after 40 minutes of i.c.v. injection of carbachol (0.5 microg). The enhancement was significantly reduced by i. c. v. injection of losartan. CONCLUSION: The results above suggest that i. c. v. injection of cholinergic agonist carbachol can enhance the activity of adrenergic neurons and the expression of AT1 receptor in locus coeruleus. The blockade of AT1 receptor may down regulate the above action induced by carbachol in locus coeruleus.