Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39121859

RESUMO

Primary familial brain calcification (PFBC) is a genetic neurological disease, yet no effective treatment is currently available. Here, we identified five novel intronic variants in SLC20A2 gene from six PFBC families. Three of these variants increased aberrant SLC20A2 pre-mRNA splicing by altering the binding affinity of splicing machineries to newly characterized cryptic exons, ultimately causing premature termination of SLC20A2 translation. Inhibiting the cryptic-exon incorporation with splice-switching ASOs increased the expression levels of functional SLC20A2 in cells carrying SLC20A2 mutations. Moreover, by knocking in a humanized SLC20A2 intron 2 sequence carrying a PFBC-associated intronic variant, the SLC20A2-KI mice exhibited increased inorganic phosphate (Pi) levels in cerebrospinal fluid (CSF) and progressive brain calcification. Intracerebroventricular administration of ASOs to these SLC20A2-KI mice reduced CSF Pi levels and suppressed brain calcification. Together, our findings expand the genetic etiology of PFBC and demonstrate ASO-mediated splice modulation as a potential therapy for PFBC patients with SLC20A2 haploinsufficiency.

2.
Neuron ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39019040

RESUMO

Aberrant inorganic phosphate (Pi) homeostasis causes brain calcification and aggravates neurodegeneration, but the underlying mechanism remains unclear. Here, we found that primary familial brain calcification (PFBC)-associated Pi transporter genes Pit2 and Xpr1 were highly expressed in astrocytes, with importer PiT2 distributed over the entire astrocyte processes and exporter XPR1 localized to astrocyte end-feet on blood vessels. This polarized PiT2 and XPR1 distribution endowed astrocyte with Pi transport capacity competent for brain Pi homeostasis, which was disrupted in mice with astrocyte-specific knockout (KO) of either Pit2 or Xpr1. Moreover, we found that Pi uptake by PiT2, and its facilitation by PFBC-associated galactosidase MYORG, were required for the high Pi transport capacity of astrocytes. Finally, brain calcification was suppressed by astrocyte-specific PiT2 re-expression in Pit2-KO mice. Thus, astrocyte-mediated Pi transport is pivotal for brain Pi homeostasis, and elevating astrocytic Pi transporter function represents a potential therapeutic strategy for reducing brain calcification.

3.
J Med Microbiol ; 73(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506717

RESUMO

Purpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods.Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF.Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %).Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/diagnóstico , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Mycobacterium tuberculosis/genética , Encéfalo
4.
Microbiol Spectr ; 12(4): e0347423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385739

RESUMO

The microbiota of perianal abscesses is scarcely investigated. Identifying causative bacteria is essential to develop antibiotic therapy. However, culture-based methods and molecular diagnostics through 16S PCR technology are often hampered by the polymicrobial nature of perianal abscesses. We sought to characterize the microbiota composition of perianal abscesses via metagenomic next-generation sequencing (mNGS). Fourteen patients suffering from perianal abscesses between March 2023 and August 2023 underwent retrospective assessment. Information from medical records was used, including clinical information, laboratory data, and culture and mNGS results. Forty bacterial taxa were identified from perianal abscesses through mNGS, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) representing the most prevalent species. mNGS identified an increased number of bacterial taxa, with an average of 6.1 compared to a traditional culture-based method which only detected an average of 1.1 in culture-positive perianal abscess patients, predominantly E. coli (75.0%), revealing the polymicrobial nature of perianal abscesses. Our study demonstrates that a more diverse bacterial profile is detected by mNGS in perianal abscesses, and that Bilophila wadsworthia is the most prevalent microorganism, potentially serving as a potential biomarker for perianal abscess.IMPORTANCEAccurately, identifying the bacteria causing perianal abscesses is crucial for effective antibiotic therapy. However, traditional culture-based methods and 16S PCR technology often struggle with the polymicrobial nature of these abscesses. This study employed metagenomic next-generation sequencing (mNGS) to comprehensively analyze the microbiota composition. Results revealed 40 bacterial taxa, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) being the most prevalent species. Compared to the culture-based approach, mNGS detected a significantly higher number of bacterial taxa (average 6.1 vs 1.1), highlighting the complex nature of perianal abscesses. Notably, Bilophila wadsworthia emerged as a potential biomarker for these abscesses. This research emphasizes the importance of mNGS in understanding perianal abscesses and suggests its potential for improving diagnostic accuracy and guiding targeted antibiotic therapy in the future.


Assuntos
Microbiota , Dermatopatias , Adulto , Humanos , Abscesso/diagnóstico , Escherichia coli/genética , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Antibacterianos , Bacteroides fragilis/genética , Metagenômica , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA