Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
ACS Appl Mater Interfaces ; 16(37): 49349-49361, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230248

RESUMO

With the intensification of global environmental pollution and resource scarcity, hydrogen has garnered significant attention as an ideal alternative to fossil fuels due to its high energy density and nonpolluting nature. Consequently, the urgent development of electrocatalytic water-splitting electrodes for hydrogen production is imperative. In this study, a superwetting selenide catalytic electrode with a peony-flower-shaped micronano array (MoS2/Co0.8Fe0.2Se2/NixSey/nickel foam (NF)) was synthesized on NF via a two-step hydrothermal method. The optimal catalytic activity of cobalt-iron selenide was achieved by adjusting the Co/Fe ratio. The intrinsic catalytic activity of the electrodes was enhanced by incorporating transition metal selenides, which then served as a precursor for the subsequent loading of MoS2 nanoflowers on the surface to fully expose the active sites. Furthermore, the superwetting properties of the electrode accelerated electrolyte penetration and electron/mass transfer, while also facilitating bubble detachment from the electrode surface, thereby preventing "bubble shielding effect". This resulted in superior oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) performance, as well as overall water splitting capabilities. In a 1.0 M KOH solution, the electrode required only 166 and 195 mV overpotential to achieve a current density of 10 mA cm-2 for OER and HER, respectively. When functioning as a bifunctional catalytic electrode, only 1.60 V of voltage was necessary to drive the electrolyzer to reach a current density of 10 mA cm-2. Moreover, laboratory simulations of wind and solar energy-driven water splitting validated the feasibility of establishing a sustainable energy-to-hydrogen production chain. This work provides new insights into the preparation of low-overpotential, high-catalytic-activity superhydrophilic and underwater superaerophobic catalytic electrodes by rationally adjusting elemental ratios and exploring changes in electrode surface wettability.

2.
Food Chem ; 463(Pt 1): 141022, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39243606

RESUMO

The bacterial community dynamics and metabolomic profiles in raw yak (Y) milk and cattle-yak (CY) milk during refrigeration at 4 °C were investigated, followed by the elucidation of interspecific differences in milk storage. Bacterial communities and succession patterns were significantly different between the two milk types during refrigeration, with Lactococcus and Pseudomonas being the key distinguishing genera. Moreover, higher network complexity and tighter interactions were observed for the microbial community in CY milk than in Y milk. Furthermore, 7 proteases and 1 lipase potentially contributed to milk spoilage. The metabolomic profiles significantly differed between the milk types during refrigeration. Extended storage time decreased the relative abundances of organic nitrogen compounds and lipids and lipid-like molecules, with a concomitant increase in organic acids and derivatives, particularly in Y milk. Moreover, 9 metabolites, whose levels gradually increased with storage time, were strongly correlated with psychrophiles and thus considered potential markers of deterioration in plateau-characteristic milk. These findings offer a theoretical foundation for augmenting the quality and safety of plateau-characteristic milk and its derivatives, while also helping us understand the microbial and metabolic dynamics in raw milk under extreme environments.

3.
Nanoscale ; 16(36): 16933-16941, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39189424

RESUMO

Ni3(NO3)2(OH)4 has a high theoretical specific capacitance, low cost, and environmental friendliness, making it a promising electrode material. Specifically, Ni3(NO3)2(OH)4 electrodes have a larger layer spacing (c = 6.898 Å) than Ni(OH)2 electrodes since NO3- has a much larger ionic radius than OH-. The larger layer spacing stores more electrolyte ions, significantly improving the electrochemical activity of the electrodes. Additionally, the interlayer NO3- can enhance the structural stability of Ni3(NO3)2(OH)4. However, since Ni3(NO3)2(OH)4 has a higher molar mass than Ni(OH)2, it has a lower theoretical specific capacity. Consequently, Ni3(NO3)2(OH)4 has not been used in zinc-based alkaline batteries. Studies showed that doping could enhance the electrochemical performance of electrode materials. Therefore, this study used a simple solvothermal reaction to synthesize yttrium-doped Ni3(NO3)2(OH)4 (Y-Ni3(NO3)2(OH)4), assembling a Y-Ni3(NO3)2(OH)4//Zn battery for electrochemical testing. Y-Ni3(NO3)2(OH)4 served as the cathode in the battery. The analysis of Y-Ni3(NO3)2(OH)4 showed that yttrium (Y) doping increased the specific surface area and pore size of Ni3(NO3)2(OH)4 significantly. The increased specific surface area improved the active material utilization, and the abundant mesopores facilitated OH- transport, substantially enhancing the battery's specific capacity and energy density. Ultimately, the specific discharge capacity of the advanced Y-Ni3(NO3)2(OH)4//Zn battery reached 177.97 mA h g-1 at a current density of 4 A g-1, nearly doubling the capacity of the earlier Ni3(NO3)2(OH)4//Zn battery (103.59 mA h g-1).

4.
Nanoscale ; 16(32): 15396-15404, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39093055

RESUMO

Modulating the A-site deficiency is a useful method to achieve the exsolution of nanoparticles on the surface of perovskite, improving the catalytic activity. However, rules for designing the deficiency value and its roles on the structure and performance remain unclear. In this study, a wide range of A-site deficiencies of (La0.4Sr0.6)1-αTi0.95Ni0.05O3±Î´ (LSTN, α = 0.00, 0.13, 0.15, and 0.18) titanate perovskite materials was designed to systematically investigate their crystal structure, binding energy, oxygen vacancy concentration, exsolution process, and electrochemical performance. An extremely high conductivity (e.g., 331.75 S cm-1@800 °C, 5% H2/Ar) was obtained in parallel with enhanced catalytical activity in SOFC and SOEC modes. The A-site-deficient samples displayed a higher conductivity, oxygen vacancy concentration, and power output than the stoichiometric samples (α = 0.00). The best maximum power density of 78.74 mW cm-2 and the highest population density of 25 particles per µm2 were obtained on the deficient LSTN with α = 0.13. These findings suggest that LSTN is an exceptionally promising material for solid oxide cell (SOC) electrodes.

5.
3 Biotech ; 14(7): 182, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38947734

RESUMO

The aim of this study was to investigate the functional effect of miR-338-5p targeting IL-6 on NF-κB/MAPK pathway-mediated inflammation and oxidative stress in atrial fibrillation (AF) rats. AF model rats were generated by tail vein injection of 0.1 mL Ach-CaCl2 mixture. The overexpression and suppression of miR-338-5p were established by injecting a miR-338-5p-agomir and a miR-338-5p-antagomir, respectively, into AF rats. Cardiac morphological changes were detected by H&E and Masson staining. The levels of ROS, SOD, T-AOC, IL-6, IL-1ß, and TNF-α were detected via ELISA. Dual luciferase assays, qRT‒PCR, and western blotting were used to verify that miR-338-5p targets IL-6. The expression of NF-κB/MAPK pathway proteins was detected by western blot. Overexpression of miR-338-5p ameliorated heart damage in AF rats. Increased miR-338-5p reduced the levels of CK, CK-MB, and cTnT to alleviate myocardial injury. Furthermore, overexpression of miR-338-5p relieved inflammation and oxidative stress by downregulating SOD and T-AOC and upregulating IL-6, IL-1ß, TNF-α, and ROS. Further research revealed that upregulation of miR-338-5p reduced the protein levels of p-p38, p-p65 and p-ERK1/2. The opposite results were obtained following miR-338-5p-antagomir treatment. Taken together, these findings indicate that the upregulation of miR-338-5p alleviated inflammation and oxidative stress by targeting IL-6 to inhibit the NF-κB/MAPK pathway, thus providing a new therapeutic target for AF.

6.
Chem Rev ; 124(8): 5119-5166, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38619540

RESUMO

Highly efficient coelectrolysis of CO2/H2O into syngas (a mixture of CO/H2), and subsequent syngas conversion to fuels and value-added chemicals, is one of the most promising alternatives to reach the corner of zero carbon strategy and renewable electricity storage. This research reviews the current state-of-the-art advancements in the coelectrolysis of CO2/H2O in solid oxide electrolyzer cells (SOECs) to produce the important syngas intermediate. The overviews of the latest research on the operating principles and thermodynamic and kinetic models are included for both oxygen-ion- and proton-conducting SOECs. The advanced materials that have recently been developed for both types of SOECs are summarized. It later elucidates the necessity and possibility of regulating the syngas ratios (H2:CO) via changing the operating conditions, including temperature, inlet gas composition, flow rate, applied voltage or current, and pressure. In addition, the sustainability and widespread application of SOEC technology for the conversion of syngas is highlighted. Finally, the challenges and the future research directions in this field are addressed. This review will appeal to scientists working on renewable-energy-conversion technologies, CO2 utilization, and SOEC applications. The implementation of the technologies introduced in this review offers solutions to climate change and renewable-power-storage problems.

7.
Materials (Basel) ; 17(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38611984

RESUMO

The cavitation effect is an important geochemical phenomenon, which generally exists under strong hydrodynamic conditions. Therefore, developing an economical and effective sonocatalyst becomes a vital method in capitalizing on the cavitation effect for energy generation. In this study, we first report a novel Fe3O4 sonocatalyst that can be easily separated using a magnetic field and does not require any additional cocatalysts for H2 production from H2O. When subjected to ultrasonic vibration, this catalyst achieves an impressive H2 production rate of up to 175 µmol/h/USD (where USD stands for dollars), surpassing most previously reported mechanical catalytic materials. Furthermore, the ease and efficiency of separating this catalyst using an external magnetic field, coupled with its effortless recovery, highlight its significant potential for practical applications. By addressing the key limitations of conventional sonocatalysts, our study not only demonstrates the feasibility of using Fe3O4 as a highly efficient sonocatalyst but also showcases the exciting possibility of using a new class of magnetically separable sonocatalysts to productively transform mechanical energy into chemical energy.

8.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 225-230, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678600

RESUMO

This study compared the therapeutic effect and safety between warfarin anticoagulation and percutaneous left atrial appendage transcatheter occlusion (PLAATO) in non-valvular atrial fibrillation (NVAF). A total of 110 patients were selected and assigned to Control group (n=55) and Observation group (n=55). The control patients were used warfarin, while the observation patients were performed PLAATO. The coagulation function, stroke and bleeding scores were compared between the two groups at different times. Left ventricular function before therapy and 1 year after therapy and adverse events during follow-up were compared between the two groups. After one month of treatment, CHA2DS2-VASC, HAS-BLED score, serum ET-1 and hs-CRP levels were lower in the PLAATO patients than in warfarin patients, but serum PDGFs levels were higher than patients in the warfarin patients (P < 0.05). One month after treatment, the activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT) of the PLAATO patients was longer than that of the warfarin patients (P < 0.05), but the levels of fibrinogen (FIB) in the PLAATO patients were lower than that of the warfarin patients (P < 0.05). In addition, one year after therapy, the left atrial end-diastolic volume (LAEDV), left atrial end-systolic volume (LAESV) and left atrial inner diameter of the two groups were significantly reduced (P < 0.05). Left atrial appendage (LAA) occlusion can effectively improve the cardiac function and coagulation function of NVAF patients, with lower incidence of bleeding events, stroke events and higher safety.


Assuntos
Anticoagulantes , Fibrilação Atrial , Coagulação Sanguínea , Oclusão do Apêndice Atrial Esquerdo , Varfarina , Varfarina/efeitos adversos , Varfarina/farmacologia , Anticoagulantes/efeitos adversos , Anticoagulantes/farmacologia , Fibrilação Atrial/sangue , Fibrilação Atrial/terapia , Apêndice Atrial/fisiopatologia , Acidente Vascular Cerebral/etiologia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Hemorragia/etiologia , Tempo de Tromboplastina Parcial , Tempo de Protrombina , Tempo de Trombina , Coagulação Sanguínea/efeitos dos fármacos , Endotelina-1/sangue , Proteína C-Reativa/análise
9.
ACS Appl Mater Interfaces ; 16(12): 14965-14973, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489479

RESUMO

Electrochemical reduction of CO2 to highly valuable products is a promising way to reduce CO2 emissions. The shape and facets of metal nanocatalysts are the key parameters in determining the catalytic performance. However, the exposed crystal facets of ZnO with different morphologies and which facets achieve a high performance for CO2 reduction are still controversial. Here, we systematically investigate the effect of the facet-dependent reactivity of reduction of CO2 to CO on ZnO (nanowire, nanosheet, and flower-like). The ZnO nanosheet with exposed (110) facet exhibited prominent catalytic performance with a Faradaic efficiency of CO up to 84% and a current density of -10 mA cm-2 at -1.2 V versus RHE, far outperforming the ZnO nanowire (101) and ZnO nanoflower (103). Based on detailed characterizations and kinetic analysis, the ZnO nanosheet (110) with porous architecture increased the exposure of active sites. Further studies revealed that the high CO selectivity originated from the enhancement of CO2 adsorption and activation on the ZnO (110) facet, which promoted the conversion of CO2 toward CO. This study provides a new way to tailor the activity and selectivity of metal catalysts by engineering exposed specific facets.

10.
Poult Sci ; 103(4): 103473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340660

RESUMO

This research examined the impact of incorporating Angelica sinensis's aerial components (APA), commonly referred to as "female ginseng", into broilers' diet. Two hundred eighty-eight 1-day-old Cobb 500 broilers were randomly assigned to the 4 experimental groups with 6 replications and 12 birds/replicate. The 4 groups were fed the diets included 4 concentrations of APA (0, 1, 2, and 3%, respectively). The study spanned 42 d, categorized as the starter phase (1-21 d) and the finisher phase (22-42 d). Notably, broilers fed with 3% APA demonstrated a pronounced surge in feed consumption and weight gain during the 22 to 42 d and over the full 42-d period (P < 0.05). Furthermore, when examining the broilers' intestinal structure, there was a notable increase in the villus height and villi ratio across the duodenum, jejunum, and ileum, with a decrease in crypt depth upon 3% APA inclusion (P < 0.05). On a molecular note, certain genes connected to the intestinal mechanical barrier, such as Zona Occludens 1 and Claudin-2, saw significant elevation in the jejunum (P < 0.05). The jejunum also displayed heightened levels of antimicrobial peptides like lysozyme, mucin 2, sIgA, IgG, and IgM, showcasing an enhanced chemical and immune barrier (P < 0.05). Delving into the 16SrDNA sequencing of intestinal content, a higher microbial diversity was evident with a surge in beneficial bacteria, particularly Firmicutes, advocating a resilient and balanced microecosystem. The findings imply that a 3% APA dietary addition bolsters growth metrics and fortifies the intestinal barrier's structural and functional integrity in broilers.


Assuntos
Angelica sinensis , Suplementos Nutricionais , Animais , Feminino , Suplementos Nutricionais/análise , Galinhas , Intestinos , Dieta/veterinária , Componentes Aéreos da Planta , Ração Animal/análise
11.
Microbiol Resour Announc ; 12(9): e0001423, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37594280

RESUMO

We report here the complete genome sequence of porcine epidemic diarrhea virus (PEDV) strain SDTA13-2020, isolated from a suckling piglet with watery diarrhea in Shandong, China. The isolate is genetically close to other recent Chinese G2 genotype PEDVs and distinct from the classical PEDVs.

12.
bioRxiv ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37066230

RESUMO

Objective: Vascular smooth muscle cells (VSMCs) are the primary contractile component of blood vessels and can undergo phenotypic switching from a contractile to a synthetic phenotype in vascular diseases such as coronary artery disease (CAD). This process leads to decreased expression of SMC lineage genes and increased proliferative, migratory and secretory abilities that drive disease progression. Super-enhancers (SE) and occupied transcription factors are believed to drive expression of genes that maintain cell identify and homeostasis. The goal of this study is to identify novel regulator of VSMC homeostasis by screening for SE-regulated transcription factors in arterial tissues. Approach and Results: We characterized human artery SEs by analyzing the enhancer histone mark H3K27ac ChIP-seq data of multiple arterial tissues. We unexpectedly discovered the transcription factor PRDM16, a GWAS identified CAD risk gene with previously well-documented roles in brown adipocytes but with an unknown function in vascular disease progression, is enriched with artery-specific SEs. Further analysis of public bulk RNA-seq and scRNA-seq datasets, as well as qRT-PCR and Western blotting analysis, demonstrated that PRDM16 is preferentially expressed in arterial tissues and in contractile VSMCs but not in visceral SMCs, and down-regulated in phenotypically modulated VSMCs. To explore the function of Prdm16 in vivo, we generated Prdm16 SMC-specific knockout mice and performed histological and bulk RNA-Seq analysis of aortic tissues. SMC-deficiency of Prdm16 does not affect the aortic morphology but significantly alters expression of many CAD risk genes and genes involved in VSMC phenotypic modulation. Specifically, Prdm16 negatively regulates the expression of Tgfb2 that encodes for an upstream ligand of TGF-ß signaling pathway, potentially through binding to the promoter region of Tgfb2 . These transcriptomic changes likely disrupt VSMC homeostasis and predispose VSMCs to a disease state. Conclusions: Our results suggest that the CAD risk gene PRDM16 is preferentially expressed in VSMCs and is a novel regulator of VSMC homeostasis. Future studies are warranted to investigate its role in VSMCs under pathological conditions such as atherosclerosis.

13.
Foods ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231653

RESUMO

This study was conducted to evaluate the potential effects of dietary grape residue levels on the slaughter indicators, meat quality, meat shelf-life, unsaturated fatty acid content, and expression of fatty acid deposition genes in the muscle of lambs. Sixty 30-month-old male Dorper and Small-Tailed Han F1 hybrid lambs were assigned to a single factor complete randomized trial design and fed with four different diets including 0%, 8%, 16%, and 24% grape dregs, respectively. The findings regarding meat production efficacy in the lambs revealed substantial differences. The control group showed notably lower dressing percentage, carcass weight, net meat weight, meat percentage concerning carcass, meat-to-bone ratio, relative visceral and kidney fat mass, and rib eye area compared to the other groups (p < 0.05). Additionally, the meat shearing force of lambs fed a diet with 16% grape pomace (GP) was significantly higher than that of the 24% GP group (p < 0.05), while the 24 h meat color parameter a* value of the control group was notably higher than that of the 8% GP group (p < 0.05). In addition, compared to the control group, lambs fed with a diet containing 16% GP had higher levels of oleic acid (C18:1n-9c), linoleic acid (C18:2n-6c), behenic acid (C22:0), tricosanoic acid (C23:0), lignoceric acid (C24:0), and conjugated linoleic acid (CLA), at a ratio of ∑CLA/TFA, ∑n-6, ∑MUFA, and ∑PUFA in the longissimus dorsi muscle (p < 0.05), but the reverse case was applicable for Total Volatile Basic Nitrogen (TVB-N) content (p < 0.05). GP supplementation did not substantially affect the expression of stearoyl-CoA desaturase (SCD), peroxisome proliferator activated receptor alpha (PPARα), and peroxisome proliferator-activated receptor gamma (PPARγ) genes (p > 0.05). The findings indicated that incorporating grape dregs in the diets of fattening lambs leads to notable enhancements in meat production and the antioxidant capacity of lamb meat, and effectively extends the shelf life of the meat.

14.
Front Chem ; 10: 999856, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092667

RESUMO

According to Hund's multiplicity rule, the energy of the lowest excited triplet state (T1) is always lower than that of the lowest excited singlet state (S1) in organic molecules, resulting in a positive singlet-triplet energy gap (ΔE ST). Therefore, the up-converted reverse intersystem crossing (RISC) from T1 to S1 is an endothermic process, which may lead to the quenching of long-lived triplet excitons in electroluminescence, and subsequently the reduction of device efficiency. Interestingly, organic molecules with inverted singlet-triplet (INVEST) gaps in violation of Hund's multiplicity rule have recently come into the limelight. The unique feature has attracted extensive attention in the fields of organic optoelectronics and photocatalysis over the past few years. For an INVEST molecule possessing a higher T1 with respect to S1, namely a negative ΔE ST, the down-converted RISC from T1 to S1 does not require thermal activation, which is possibly conducive to solving the problems of fast efficiency roll-off and short lifetime of organic light-emitting devices. By virtue of this property, INVEST molecules are recently regarded as a new generation of organic light-emitting materials. In this review, we briefly summarized the significant progress of INVEST molecules in both theoretical calculations and experimental studies, and put forward suggestions and expectations for future research.

15.
Virol Sin ; 37(5): 646-655, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961502

RESUMO

Porcine epidemic diarrhea (PED) caused by porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases in the global pig industry due to its high mortality rate in piglets. Maternal vaccines can effectively enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge. From 2017 to 2021, we collected 882 diarrhea samples from 303 farms in China to investigate the epidemiology of PEDV. The result showed that about 52.15% (158/303) of the farms were positive for PEDV with an overall detection rate of 63.95% (564/882) of the samples. The S1 fragments of S gene from 104 strains were sequenced for the phylogenetic analysis. A total of 71 PEDV strains (68.27%) sequenced in this study were clustered into the predominant G2c subgroup, while the newly-defined G2d strains (9.62%) were identified in three provinces of China. The NH-TA2020 strain of G2c subgroup was isolated and cultured, and its infection to piglets caused watery diarrhea within 24 â€‹h, indicating its strong pathogenicity. Oral administration of NH-TA2020 strain to pregnant gilts stimulated high levels of IgA antibody in colostrum. The piglets fed by the gilts above were challenged with NH-TA2020 strain or CH-HeB-RY-2020 strain from G2d subgroup, and the clinical symptoms and virus shedding were significantly reduced compared to the mock group. Our findings suggest that G2c subgroup is the predominant branch circulating in China from 2017 to 2021. Oral administration of NH-TA2020 enhances maternal IgA and lactogenic immune responses, which confer protection against the homologous and emerging G2d PEDV strains challenges in neonates.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , China/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/epidemiologia , Diarreia/veterinária , Feminino , Imunoglobulina A , Imunoglobulina A Secretora/genética , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Gravidez , Sus scrofa , Suínos
16.
J Environ Manage ; 309: 114598, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35151137

RESUMO

The effectiveness of the adsorption process is determined by the type of adsorbent used, but some adsorbents require a significant amount of processing to achieve the desired quality, and this has become a drawback economically and environmentally. This study focused on mitigating the issue of waste management and land pollution by using amarula waste biomass, which is a low-cost adsorbent that is obtained from the industrial waste by-product. The amarula shell (AmSh) waste was found to have a higher adsorption efficiency of 30 ± 3% compared to the amarula seed (AmSe) waste and the amarula fruit (AmWa) waste, which had 19 ± 5% and 9.5 ± 0.7% efficiency, respectively. It was found that the amarula waste biomass performed better at lower adsorption temperatures. The adsorption capacity was found to decrease with an increase in the quantity of the biomass. Kinetic models were applied to the experimental data. Thermodynamic parameters were also studied to determine the spontaneity of the adsorption process. The characteristics of both the fresh and used amarula waste biomass was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy with Energy Dispersive Spectroscopy (FESEM-EDS), Brunauer-Emmett-Teller (BET) and Thermogravimetric Analysis (TGA). It was then concluded that cellulose and hemicellulose structures in amarula waste biomass played a major role in reducing the content of dibenzothiophene in model diesel fuel.


Assuntos
Gasolina , Poluentes Químicos da Água , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Tiofenos , Poluentes Químicos da Água/química
17.
J Colloid Interface Sci ; 616: 287-297, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219194

RESUMO

Electrochemical water splitting for hydrogen production using cost-effective and high-efficiency electrocatalysts in alkaline electrolytes is of great significance for solving energy crisis and environmental pollution. Herein, we reported a superhydrophilic and underwater superaerophobic multistage layered micro-nano structure ofCo9S8-Ni3S2-CNTs/NF on nickel foam (NF) prepared by a simple one-step hydrothermal procedure. Particularly, the multistage layered micro-nano structure makes the electrode superhydrophilic and superaerophobic, which can facilitate the exposure of active sites, accelerate the tansfer of electrolyte and the release of gas bubbles. Consequently, the rough electrode demonstrated excellent catalytic performance in alkaline condition, which only need a low overpotential 127 mV for oxygen evolution reaction (OER) and 243 mV for hydrogen evolution reaction (HER) at 10 mA cm-2 and can keep a long durability for 10 h at 10 mA cm-2. In addition, the production of hydrogen in an electrolytic water device with Co9S8-Ni3S2-CNTs/NF as bifunctional electrode prowered by the electricity derived from solar and wind energy in laboratory condition was artificially simulated. This work represents a perspective in improving the electrocatalytic performance of water splitting by structure and wettability regulation and opens a new avenue for clean energy generation.

18.
Am J Emerg Med ; 51: 248-256, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34781150

RESUMO

BACKGROUND: Intravenous diltiazem and metoprolol are both commonly used to treat atrial fibrillation (AF) with rapid ventricular rate (RVR) in the emergency department (ED), but the advantages and disadvantages of these drugs cannot be verified. This meta-analysis aimed to assess the efficacy and safety of intravenous diltiazem versus metoprolol for AF with RVR. METHOD: We systematically searched PubMed, Web of Science, Embase, Cochrane library, the China National Knowledge Infrastructure (CNKI), Wanfang, China Biology Medicine disc (CBM) and the WeiPu (VIP). Meta-analysis was performed using weighted mean difference (WMD), relative risk (RR) and 95% confidence interval (CI). Statistical analysis was performed using Review Manager 5.4.1. RESULTS: Seventeen studies involving 1214 patients in nine randomized controlled trials (RCTs) and eight cohort studies were included in meta-analysis, including 643 patients in the intravenous diltiazem group and 571 patients group in the intravenous metoprolol. The results of the meta-analysis showed that compared with intravenous metoprolol, intravenous diltiazem was found higher efficacy (RR =1.11; 95% CI = 1.06 to 1.16, p < 0.00001), shorter average onset time (RR = -1.13; 95% CI = -1.97 to -0.28, p = 0.009), lower ventricular rate (RR = -9.48; 95% CI = -12.13 to -6.82, p<0.00001), less impact on systolic blood pressure (WMD = 3.76; 95% CI: 0.20 to 7.33, P = 0.04), and no significant difference in adverse events (RR = 0.80, 95% CI = 0.55 to 1.14, P = 0.22) and diastolic blood pressure (WMD = -1.20; 95% CI: -3.43 to 1.04, P = 0.29) was found between intravenous diltiazem and metoprolol. CONCLUSION: Intravenous diltiazem has higher efficacy, shorter average onset time, lower ventricular rate, less impact on blood pressure, and with no increase in adverse events compared to intravenous metoprolol.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Diltiazem/uso terapêutico , Frequência Cardíaca/efeitos dos fármacos , Metoprolol/uso terapêutico , Administração Intravenosa , Pressão Sanguínea/efeitos dos fármacos , Diltiazem/administração & dosagem , Humanos , Metoprolol/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Int J Cardiol ; 345: 83-88, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653575

RESUMO

OBJECTIVE: Improving health-related quality of life (HRQoL) and exercise capacity is an important goal of treatment in heart failure (HF). However, evidence for the effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors on the improvement of HRQoL and exercise capacity seems to be conflicted. We performed a systematic review and meta-analysis to evaluate the effects of SGLT-2 inhibitors on HRQL and exercise capacity in patients with heart failure and reduced ejection fraction (HFrEF). METHODS: All studies (up to March 20, 2021) evaluating the effects of SGLT-2 inhibitors on HRQoL and exercise capacity in patients with HFrEF were initially searched from four electronic search engines: PubMed, Web of Science, Cochrane Library, and SinoMed. All statistical analyses were performed with RevMan 5.4. RESULTS: We included 9 articles describing 7 trials with 9428 patients. SGLT-2 inhibitors group exhibited significant improvement in HRQoL assessed by Kansas City Cardiomyopathy Questionnaires (KCCQ) (MD: 2.13, 95% CI: 1.11 to 3.14, p < 0.001) and the rate of KCCQ-overall summary score improvement≥5 points (RR 1.15, 95%CI 1.08 to 1.21, P < 0.001) compared with placebo. No significant difference was observed in exercise capacity assessed by 6-min walk test distance between SGLT-2 inhibitors and placebo (MD 24.45, 95%CI -22.82 to 71.72, P = 0.31). CONCLUSIONS: Our meta-analysis demonstrates that SGLT-2 inhibitors significantly improve HRQoL, and supports the concept that SGLT-2 inhibitors do not significantly improve exercise capacity in patients with HFrEF. Studies with larger sample sizes and longer follow-up duration are needed to determine whether the treatment with SGLT-2 inhibitors may improve exercise ability. PROSPERO: CRD42021248346.


Assuntos
Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Tolerância ao Exercício , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Qualidade de Vida , Volume Sistólico
20.
ESC Heart Fail ; 8(6): 5560-5564, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612024

RESUMO

Myocardial fibrosis detected by cardiac magnetic resonance (CMR) has been reported in patients with desmin-related myopathy, although its characteristics remain unclear. Here, we describe a case of desmin-related restrictive cardiomyopathy wherein CMR imaging revealed myocardial oedema, ischaemia, and fibrosis in the left ventricle; the different types and processes of myocardial injury were detected by CMR. Middle wall left ventricular enhancement may be a feature of late gadolinium enhancement, and the lateral wall is often involved in cases of myocardial injury. CMR is useful for the early detection of cardiac involvement and the prediction of prognosis in patients diagnosed with desmin-related myopathy.


Assuntos
Cardiomiopatias/diagnóstico , Cardiomiopatia Restritiva , Distrofias Musculares/diagnóstico , Cardiomiopatia Restritiva/diagnóstico , Meios de Contraste , Desmina , Feminino , Gadolínio , Humanos , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA