Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Immunol ; 213(2): 204-213, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38856712

RESUMO

Bats are the natural reservoir hosts of some viruses, some of which may spill over to humans and cause global-scale pandemics. Different from humans, bats may coexist with high pathogenic viruses without showing symptoms of diseases. As one of the most important first defenses, bat type I IFNs (IFN-Is) were thought to play a role during this virus coexistence and thus were studied in recent years. However, there are arguments about whether bats have a contracted genome locus or constitutively expressed IFNs, mainly due to species-specific findings. We hypothesized that because of the lack of pan-bat analysis, the common characteristics of bat IFN-Is have not been revealed yet. In this study, we characterized the IFN-I locus for nine Yangochiroptera bats and three Yinpterochiroptera bats on the basis of their high-quality bat genomes. We also compared the basal expression in six bats and compared the antiviral and antiproliferative activity and the thermostability of representative Rhinolophus bat IFNs. We found a dominance of unconventional IFNω-like responses in the IFN-I system, which is unique to bats. In contrast to IFNα-dominated IFN-I loci in the majority of other mammals, bats generally have shorter IFN-I loci with more unconventional IFNω-like genes (IFNω or related IFNαω), but with fewer or even no IFNα genes. In addition, bats generally have constitutively expressed IFNs, the highest expressed of which is more likely an IFNω-like gene. Likewise, the highly expressed IFNω-like protein also demonstrated the best antiviral activity, antiproliferative activity, or thermostability, as shown in a representative Rhinolophus bat species. Overall, we revealed pan-bat unique, to our knowledge, characteristics in the IFN-I system, which provide insights into our understanding of the innate immunity that contributes to a special coexistence between bats and viruses.


Assuntos
Quirópteros , Interferon Tipo I , Quirópteros/imunologia , Quirópteros/genética , Quirópteros/virologia , Animais , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Humanos , Antivirais , Imunidade Inata/genética , Filogenia
2.
J Virol ; 97(10): e0091623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772826

RESUMO

IMPORTANCE: Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry. Additionally, various host proteases participated in SADS-CoV entry into diverse cells with different efficiencies. Our findings suggested that SADS-CoV may exploit multiple pathways to enter cells, providing insights into intervention strategies targeting the cell entry of this virus.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Endopeptidases , Glicoproteínas , Doenças dos Suínos , Suínos , Internalização do Vírus , Animais , Alphacoronavirus/fisiologia , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Endopeptidases/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Suínos/virologia , Doenças dos Suínos/enzimologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Internalização do Vírus/efeitos dos fármacos , Tunicamicina/farmacologia , Glicosilação
3.
Emerg Microbes Infect ; 12(2): 2249120, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37584551

RESUMO

ABSTRACTZoonotic transmission of coronaviruses (CoVs) poses a serious public health threat. Swine acute diarrhea syndrome coronavirus (SADS-CoV), originating from a bat HKU2-related CoV, causes devastating swine diseases and poses a high risk of spillover to humans. Currently, licensed therapeutics that can prevent potential human outbreaks are unavailable. Identifying the cellular proteins that restrict viral infection is imperative for developing effective interventions and therapeutics. We utilized a large-scale human cDNA screening and identified transmembrane protein 53 (TMEM53) as a novel cell-intrinsic SADS-CoV restriction factor. The inhibitory effect of TMEM53 on SADS-CoV infection was found to be independent of canonical type I interferon responses. Instead, TMEM53 interacts with non-structural protein 12 (NSP12) and disrupts viral RNA-dependent RNA polymerase (RdRp) complex assembly by interrupting NSP8-NSP12 interaction, thus suppressing viral RdRp activity and RNA synthesis. Deleting the transmembrane domain of TMEM53 resulted in the abrogation of TMEM53-NSP12 interaction and TMEM53 antiviral activity. Importantly, TMEM53 exhibited broad antiviral activity against multiple HKU2-related CoVs. Our findings reveal a novel role of TMEM53 in SADS-CoV restriction and pave the way to host-directed therapeutics against HKU2-related CoV infection.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Proteínas de Membrana , Animais , Humanos , Alphacoronavirus/genética , Antivirais/farmacologia , RNA Polimerase Dependente de RNA/genética , Suínos , Proteínas de Membrana/genética
4.
mBio ; 14(2): e0328522, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786573

RESUMO

In the last 2 decades, pathogens originating in animals may have triggered three coronavirus pandemics, including the coronavirus disease 2019 pandemic. Thus, evaluation of the spillover risk of animal severe acute respiratory syndrome (SARS)-related coronavirus (SARSr-CoV) is important in the context of future disease preparedness. However, there is no analytical framework to assess the spillover risk of SARSr-CoVs, which cannot be determined by sequence analysis alone. Here, we established an integrity framework to evaluate the spillover risk of an animal SARSr-CoV by testing how viruses break through key human immune barriers, including viral cell tropism, replication dynamics, interferon signaling, inflammation, and adaptive immune barriers, using human ex vivo lung tissues, human airway and nasal organoids, and human lung cells. Using this framework, we showed that the two pre-emergent animal SARSr-CoVs, bat BtCoV-WIV1 and pangolin PCoV-GX, shared similar cell tropism but exhibited less replicative fitness in the human nasal cavity or airway than did SARS-CoV-2. Furthermore, these viruses triggered fewer proinflammatory responses and less cell death, yet showed interferon antagonist activity and the ability to partially escape adaptive immune barriers to SARS-CoV-2. Collectively, these animal viruses did not fully adapt to spread or cause severe diseases, thus causing successful zoonoses in humans. We believe that this experimental framework provides a path to identifying animal coronaviruses with the potential to cause future zoonoses. IMPORTANCE Evaluation of the zoonotic risk of animal SARSr-CoVs is important for future disease preparedness. However, there are misconceptions regarding the risk of animal viruses. For example, an animal SARSr-CoV could readily infect humans. Alternately, human receptor usage may result in spillover risk. Here, we established an analytical framework to assess the zoonotic risk of SARSr-CoV by testing a series of virus-host interaction profiles. Our data showed that the pre-emergent bat BtCoV-WIV1 and pangolin PCoV-GX were less adapted to humans than SARS-CoV-2 was, suggesting that it may be extremely rare for animal SARSr-CoVs to break all bottlenecks and cause successful zoonoses.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Pangolins , SARS-CoV-2 , Zoonoses , Interferons , Filogenia
5.
mBio ; 13(6): e0256622, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409074

RESUMO

Hundreds of sarbecoviruses have been found in bats, but only a fraction of them have the ability to infect cells using angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV and -2. To date, only ACE2-dependent sarbecoviruses have been isolated from field samples or grown in the laboratory. ACE2-independent sarbecoviruses, comprising the majority of the subgenus, have not been propagated in any type of cell culture, as the factors and conditions needed for their replication are completely unknown. Given the significant zoonotic threat posed by sarbecoviruses, cell culture models and in vitro tools are urgently needed to study the rest of this subgenus. We previously showed that the exogenous protease trypsin could facilitate cell entry of viral-like particles pseudotyped with spike protein from some of the ACE2-independent sarbecoviruses. Here, we tested if these conditions were sufficient to support bona fide viral replication using recombinant bat sarbecoviruses. In the presence of trypsin, some of the spike proteins from clade 2 viruses were capable of supporting bat sarbecovirus infection and replication in human and bat cells. Protease experiments showed a specific viral dependence on high levels of trypsin, as TMPRSS2 and furin had no effect on clade 2 virus entry. These results shed light on how sarbecoviruses transmit and coexist in their natural hosts, provide key insights for future efforts to isolate and grow these viruses from field samples, and further underscore the need for broadly protective, universal coronavirus vaccines. IMPORTANCE Our studies demonstrate that some unexplored sarbecoviruses are capable of replicating in human and bat cells in an ACE2-independent way but need a high trypsin environment. We found that trypsin is not compensated by other known proteases involved in some coronavirus entry. This work provides important information that the trypsin-dependent entry may be a widely employed mechanism for coronaviruses and will help for further understanding the biological features of the less-studied viruses.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Humanos , Enzima de Conversão de Angiotensina 2 , Tripsina , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Dev Comp Immunol ; 127: 104307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748795

RESUMO

DNA damage inducible transcript 3 (DDIT3, also known as CHOP) belongs to the CCAAT/enhancer-binding protein (C/EBP) family and plays an essential role in endoplasmic reticulum stress. Here, we characterized the potential role of the Chinese tree shrew (Tupaia belangeri chinensis) DDIT3 (tDDIT3) in viral infections. The tDDIT3 protein is highly conserved and has a species-specific insertion of the SQSS repeat upstream of the C-terminal basic-leucine zipper (bZIP) domain. Phylogenetic analysis of DDIT3 protein sequences of tree shrew and related mammals indicated a closer genetic affinity between tree shrew and primates than between tree shrew and rodents. Three positively selected sites (PSSs: Glu83, Pro93, and Ser172) were identified in tDDIT3 based on the branch-site model. Expression analysis of tDDIT3 showed a constitutively expressed level in different tissues and a significantly increased level in tree shrew cells upon herpes simplex virus type 1 (HSV-1) and Newcastle disease virus (NDV) infections. Overexpression of tDDIT3 significantly increased the production of HSV-1 and vesicular stomatitis virus (VSV) in tree shrew primary renal cells (TSPRCs), whereas tDDIT3 knockout in tree shrew stable cell line (TSR6 cells) had an inhibitory effect on virus production. The enhanced effect on viral infection by tDDIT3 was not associated with the three PSSs. Mechanistically, tDDIT3 overexpression inhibited type I IFN signaling. tDDIT3 interacted with tMAVS through CARD and PRR domains, but not with other immune-related factors such as tMDA5, tSTING and tTBK1. Collectively, our results revealed tDDIT3 as a negative regulator for virus infection.


Assuntos
Herpesvirus Humano 1 , Viroses , Animais , Dano ao DNA , Filogenia , Tupaia/genética
7.
J Immunol ; 207(11): 2673-2680, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34732469

RESUMO

Stimulator of IFN genes (STING) is a key molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase to activate IFN expression and autophagy in the fight against microbial infection. The regulation of STING in the activation of IFN expression has been extensively reported, whereas the regulation of STING in the initiation of autophagy is still insufficiently determined. IFN-inducible guanylate-binding proteins (GBPs) are central to the cell-autonomous immunity in defending a host against viral, bacterial, and protozoan infections. In this study using the Chinese tree shrew (Tupaia belangeri chinensis), which is genetically close to primates, we found that Tupaia GBP1 (tGBP1) combines with Tupaia STING (tSTING), promotes autophagy, and moderately inhibits HSV type 1 (HSV-1) infection. The antiviral effects of tGBP1 are IFN independent. Mechanistically, tGBP1 interacted with tSTING, Tupaia sequestosome 1, and Tupaia microtubule associated protein 1 L chain 3, forming a complex which promotes autophagy in response to HSV-1 infection. This function of tGBP1 against HSV-1 infection was lost in tSTING knockout cells. Overexpression of either tSTING or its mutant tSTING-ΔCTT that can only activate autophagy rescued the anti-HSV-1 activity of tGBP1 in tSTING knockout cells. Our study not only elucidated the underlying mechanism of tGBP1 antiviral activity against HSV-1 infection, but also uncovered the regulation of tSTING in the initiation of autophagy in response to HSV-1 infection.


Assuntos
Autofagia/imunologia , Proteínas de Ligação ao GTP/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Animais , Células HEK293 , Humanos , Tupaia
8.
mBio ; 12(5): e0234221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700373

RESUMO

The recent emergence and spread of zoonotic viruses highlights that animal-sourced viruses are the biggest threat to global public health. Swine acute diarrhea syndrome coronavirus (SADS-CoV) is an HKU2-related bat coronavirus that was spilled over from Rhinolophus bats to swine, causing large-scale outbreaks of severe diarrhea disease in piglets in China. Unlike other porcine coronaviruses, SADS-CoV possesses broad species tissue tropism, including primary human cells, implying a significant risk of cross-species spillover. To explore host dependency factors for SADS-CoV as therapeutic targets, we employed genome-wide CRISPR knockout library screening in HeLa cells. Consistent with two independent screens, we identified the zinc finger DHHC-type palmitoyltransferase 17 (ZDHHC17 or ZD17) as an important host factor for SADS-CoV infection. Through truncation mutagenesis, we demonstrated that the DHHC domain of ZD17 that is involved in palmitoylation is important for SADS-CoV infection. Mechanistic studies revealed that ZD17 is required for SADS-CoV genomic RNA replication. Treatment of infected cells with the palmitoylation inhibitor 2-bromopalmitate (2-BP) significantly suppressed SADS-CoV infection. Our findings provide insight on SADS-CoV-host interactions and a potential therapeutic application. IMPORTANCE The recent emergence of deadly zoonotic viral diseases, including Ebola virus and SARS-CoV-2, emphasizes the importance of pandemic preparedness for the animal-sourced viruses with potential risk of animal-to-human spillover. Over the last 2 decades, three significant coronaviruses of bat origin, SARS-CoV, MERS-CoV, and SARS-CoV-2, have caused millions of deaths with significant economy and public health impacts. Lack of effective therapeutics against these coronaviruses was one of the contributing factors to such losses. Although SADS-CoV, another coronavirus of bat origin, was only known to cause fatal diarrhea disease in piglets, the ability to infect cells derived from multiple species, including human, highlights the potential risk of animal-to-human spillover. As part of our effort in pandemic preparedness, we explore SADS-CoV host dependency factors as targets for host-directed therapeutic development and found zinc finger DHHC-type palmitoyltransferase 17 is a promising drug target against SADS-CoV replication. We also demonstrated that a palmitoylation inhibitor, 2-bromopalmitate (2-BP), can be used as an inhibitor for SADS-CoV treatment.


Assuntos
Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alphacoronavirus/patogenicidade , Proteínas do Tecido Nervoso/metabolismo , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alphacoronavirus/efeitos dos fármacos , Animais , COVID-19/metabolismo , Células HeLa , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Proteínas do Tecido Nervoso/genética , Palmitatos/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Suínos
10.
Cytokine ; 138: 155388, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271385

RESUMO

Chinese tree shrews (Tupaia belangeri chinensis) are increasingly used as an alternative experimental animal to non-human primates in studying viral infections. Guanylate-binding proteins (GBP) belong to interferon (IFN)-inducible GTPases and defend the mammalian cell interior against diverse invasive pathogens. Previously, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5, and tGBP7) and found that tGBP1 showed antiviral activity against vesicular stomatitis virus (VSV) and type 1 herpes simplex virus (HSV-1) infections. Here, we showed that the anti-VSV activity of tGBP1 was independent of its GTPase activity and isoprenylation. In response to VSV infection, instead of regulating IFN expression and autophagy, tGBP1 competed with the VSV nucleocapsid (N) protein in binding to the VSV phosphoprotein (VSV-P), leading to the repression of the primary transcription of the VSV genome. These observations constitute the first report of the potential mechanism underlying the inhibition of VSV by GBP1.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Genoma Viral , Fosfoproteínas/genética , Tupaia/genética , Vesiculovirus/metabolismo , Animais , Autofagia , Células HEK293 , Humanos , Interferons/metabolismo , Proteínas do Nucleocapsídeo/química , Ligação Proteica , Fatores de Transcrição/genética , Transcrição Gênica , Regulação para Cima , Proteínas Virais/química , Replicação Viral/efeitos dos fármacos
11.
J Immunol ; 205(12): 3419-3428, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188074

RESUMO

Melanoma differentiation-associated gene 5 (MDA5) is a key cytoplasmic dsRNA sensor. Upon binding to invading viral RNA, activated MDA5 is recruited to mitochondria and interacts with mitochondrial antiviral signaling gene (MAVS) to initiate innate antiviral immune responses. The elegant regulation of this process remains elusive. In this study, using the Chinese tree shrew (Tupaia belangeri chinensis), which is genetically close to primates, we identified the Tupaia oligoadenylate synthetases-like 1 (tOASL1) as a positive regulator of the Tupaia MDA5 (tMDA5) and Tupaia MAVS (tMAVS)-mediated IFN signaling. Overexpression of tOASL1 significantly potentiated the RNA virus-triggered induction of the type I IFNs and downstream antiviral genes. Conversely, knockdown of tOASL1 had an impaired antiviral immune response. Mechanistically, tOASL1 was associated with mitochondria and directly interacted with tMDA5 and tMAVS. Upon RNA virus infection, tOASL1 enhanced the interaction between tMDA5 and tMAVS via its OAS and UBL domains. Our results revealed a novel mechanism by which tOASL1 contributes to host antiviral responses via enhancing tMDA5 and tMAVS interaction.


Assuntos
2',5'-Oligoadenilato Sintetase/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Imunidade Inata , Helicase IFIH1 Induzida por Interferon/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Animais , Tupaia
12.
J Immunol ; 205(8): 2091-2099, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32907995

RESUMO

Hepatitis C virus (HCV) infection is the cause of severe liver disease in many people. The restricted species tropism of HCV hinders the research and development of drugs and vaccines. The Chinese tree shrew (Tupaia belangeri chinensis) is a close relative of primates and can be infected by HCV, but the underlying mechanisms are unknown. In this study, we have characterized the functions of tree shrew MAVS (tMAVS) in response to HCV infection and defined the capacity of HCV replication. HCV was shown to be colocalized with tMAVS in primary tree shrew hepatocytes and cleaved tMAVS at site Cys508 via its NS3/4A protease, with a modulating effect by site Glu506 of tMAVS. The tMAVS cleavage by HCV NS3/4A impaired the IRF3-mediated induction of IFN-ß but maintained the activated NF-κB signaling in the tree shrew primary cells. Activation of the tMAVS-dependent NF-κB signaling inversely inhibited HCV replication and might limit the establishment of persistent infection. Overall, our study has revealed an elegant example of the balance between the host defenses and HCV infection via the MAVS-mediated antiviral signaling and has provided an insight into the mechanisms underpinning HCV infection in the Chinese tree shrew.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Evasão da Resposta Imune , Imunidade Inata , NF-kappa B/imunologia , Tupaia/imunologia , Replicação Viral/imunologia , Animais , Hepatite C/veterinária
13.
Zool Res ; 41(5): 517-526, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32701249

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic continues to pose a global threat to the human population. Identifying animal species susceptible to infection with the SARS-CoV-2/ HCoV-19 pathogen is essential for controlling the outbreak and for testing valid prophylactics or therapeutics based on animal model studies. Here, different aged Chinese tree shrews (adult group, 1 year old; old group, 5-6 years old), which are close relatives to primates, were infected with SARS-CoV-2. X-ray, viral shedding, laboratory, and histological analyses were performed on different days post-inoculation (dpi). Results showed that Chinese tree shrews could be infected by SARS-CoV-2. Lung infiltrates were visible in X-ray radiographs in most infected animals. Viral RNA was consistently detected in lung tissues from infected animals at 3, 5, and 7 dpi, along with alterations in related parameters from routine blood tests and serum biochemistry, including increased levels of aspartate aminotransferase (AST) and blood urea nitrogen (BUN). Histological analysis of lung tissues from animals at 3 dpi (adult group) and 7 dpi (old group) showed thickened alveolar septa and interstitial hemorrhage. Several differences were found between the two different aged groups in regard to viral shedding peak. Our results indicate that Chinese tree shrews have the potential to be used as animal models for SARS-CoV-2 infection.


Assuntos
Betacoronavirus/crescimento & desenvolvimento , Infecções por Coronavirus/diagnóstico , Modelos Animais de Doenças , Pulmão/patologia , Pneumonia Viral/diagnóstico , Tupaiidae/fisiologia , Fatores Etários , Animais , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Feminino , Humanos , Pulmão/virologia , Masculino , Pandemias , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Tupaiidae/virologia , Eliminação de Partículas Virais/fisiologia
14.
J Immunol ; 204(12): 3191-3204, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376647

RESUMO

The stimulator of IFN genes (STING; also known as MITA, TMEM173, MPYS, or ERIS) is generally regarded as a key adaptor protein for sensing pathogenic DNA genomes. However, its role in RNA viral signaling as part of the innate immunity system remains controversial. In this study, we identified two isoforms of STING (a full-length Tupaia STING [tSTING-FL] and a Tupaia STING short isoform [tSTING-mini]) in the Chinese tree shrew (Tupaia belangeri chinensis), a close relative of primates. tSTING-FL played a key role in the HSV-1-triggered type I IFN signaling pathway, whereas tSTING-mini was critical for RNA virus-induced antiviral signaling transduction. tSTING-mini, but not tSTING-FL, interacted with tMDA5-tLGP2 and tIRF3 in resting cells. Upon RNA virus infection, tSTING-mini caused a rapid enhancement of the tMDA5-tLGP2-mediated antiviral response and acted earlier than tSTING-FL. Furthermore, tSTING-mini was translocated from the cytoplasm to the nucleus during RNA virus infection and promoted tIRF3 phosphorylation through tSTING-mini-tIRF3 interaction, leading to a restriction of viral replication. After the initiation of antiviral effect, tSTING-mini underwent rapid degradation by tDTX3L-tPAPR9 via k48-linked ubiquitination through a proteasome-dependent pathway. Our results have shown alternative isoforms of STING counteract RNA virus infection in different ways.


Assuntos
Processamento Alternativo/genética , Fator Regulador 3 de Interferon/genética , Helicase IFIH1 Induzida por Interferon/genética , Proteínas de Membrana/genética , RNA Helicases/genética , Vírus de RNA/genética , Tupaia/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Imunidade Inata/genética , RNA Viral/genética , Transdução de Sinais/genética , Células Vero , Replicação Viral/genética
15.
Zool Res ; 40(6): 506-521, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31418539

RESUMO

Chinese tree shrews (Tupaia belangeri chinensis) have become an increasingly important experimental animal in biomedical research due to their close relationship to primates. An accurately sequenced and assembled genome is essential for understanding the genetic features and biology of this animal. In this study, we used long-read single-molecule sequencing and high-throughput chromosome conformation capture (Hi-C) technology to obtain a high-qualitychromosome-scale scaffolding of the Chinese tree shrew genome. The new reference genome (KIZ version 2: TS_2.0) resolved problems in presently available tree shrew genomes and enabled accurate identification of large and complex repeat regions, gene structures, and species-specific genomic structural variants. In addition, by sequencing the genomes of six Chinese tree shrew individuals, we produced a comprehensive map of 12.8 M single nucleotide polymorphisms and confirmed that the major histocompatibility complex (MHC) loci and immunoglobulin gene family exhibited high nucleotide diversity in the tree shrew genome. We updated the tree shrew genome database (TreeshrewDB v2.0: http://www.treeshrewdb.org) to include the genome annotation information and genetic variations. The new high-quality reference genome of the Chinese tree shrew and the updated TreeshrewDB will facilitate the use of this animal in many different fields of research.


Assuntos
Cromossomos/genética , Cromossomos/fisiologia , Genoma , Polimorfismo Genético , Tupaia/genética , Animais , Bases de Dados Genéticas , Especificidade da Espécie
16.
Dev Comp Immunol ; 96: 27-36, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30817937

RESUMO

Following viral detection and interferons (IFNs) production, several hundreds of IFN-stimulated genes (ISGs) are subsequently induced to act as direct antiviral effectors or regulators of the IFN signaling. The guanylate-binding protein (GBP) family belongs to IFN-inducible GTPases defending the host against a diverse group of invading pathogens such as parasites, bacteria and viruses. The Chinese tree shrew (Tupaia belangeri chinese) has been increasingly used as an alternative experimental animal to primates in studying viral infectious diseases. Hitherto, the tree shrew GBP family has not been characterized. In this study, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5 and tGBP7) and characterized their antiviral activities. All these tGBPs were ubiquitously expressed in heart, spleen, intestines, kidney, liver, lung and brain tissues of the tree shrew. IFN-γ treatment of tree shrew primary renal cells (TSPRCs) significantly induced the mRNA expression of tGBPs. Infections with Newcastle disease virus (NDV), encephalomyocarditis virus (EMCV) and type 1 herpes simplex virus (HSV-1) enhanced tGBPs mRNA expression in TSPRCs, but had no effect on the localization of tGBP proteins in the cytoplasm. tGBP1, but not the other four tGBPs, showed antiviral activity against vesicular stomatitis virus (VSV) and HSV-1 infections. Taken together, this study provided the first-hand information of the GBP family members in the Chinese tree shrew, which might assist the development of tree shrew animal model for infectious diseases.


Assuntos
Proteínas de Ligação ao GTP/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tupaia/imunologia , Viroses/imunologia , Animais , Modelos Animais de Doenças , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Herpesvirus Humano 1/imunologia , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Rim/citologia , Fases de Leitura Aberta , Cultura Primária de Células , Tupaia/genética , Tupaia/metabolismo , Vesiculovirus/imunologia , Viroses/veterinária , Viroses/virologia
17.
Appl Microbiol Biotechnol ; 103(5): 2171-2180, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30637496

RESUMO

The Chinese tree shrew holds a great potential as a viable animal model in biomedical research, especially for infectious diseases and neuropsychiatric disorders. A thorough understanding of the innate immunity, which represents the first line that defends the host against viral infection, of the Chinese tree shrew, is needed. However, the progress is hindered by the lack of a proper cell line for research usage. In this study, we established a cell line that is applicable to the study of tree shrew innate immune responses against viral infections. The Chinese tree shrew primary renal cells (TSPRCs) were immortalized by simian virus 40 large T antigen (SV40LT) transduction, and the immortalized cells were termed TSR6 (tree shrew renal cell #6). TSR6 showed a similar morphology to TSPRCs and expressed the epithelial cell-specific marker cytokeratin 18 (KRT18). In addition, TSR6 could be transfected by transfection reagent and was suitable for CRISPR/Cas9-mediated gene editing. Infection of Newcastle disease virus (NDV) or herpes simplex virus 1 (HSV-1) in TSR6 induced the mRNA expression of tree shrew interferon-ß (tIFNB1) and myxovirus resistance protein 1 (tMx1) in a dose- and time-dependent manner. Collectively, we successfully established a tree shrew renal cell line and demonstrated that this cell line was suitable for the study of the innate immune response to viral infections.


Assuntos
Células Epiteliais/metabolismo , Edição de Genes/métodos , Imunidade Inata/imunologia , Rim/citologia , Viroses/imunologia , Animais , Antígenos Transformantes de Poliomavirus/genética , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Herpesvirus Humano 1/crescimento & desenvolvimento , Humanos , Interferon beta/biossíntese , Queratina-18/biossíntese , Proteínas de Resistência a Myxovirus/biossíntese , Vírus da Doença de Newcastle/crescimento & desenvolvimento , Cultura Primária de Células , Tupaiidae
18.
Cytokine ; 114: 106-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30467096

RESUMO

Virus infection induces type I interferons (IFNs) that in turn exert their pleiotropic effects through inducing a large number of interferon-stimulated genes (ISGs). The IFN-induced 2',5'-oligoadenylate synthetases (OASs) have been identified as a member of the ISGs family characterized by the ability to synthesize 2',5'-oligoadenylate (2-5A), which can induce the degradation of viral RNA by activating RNase L within the infected cells to block viral replications. In this study, we characterized the OASs of the Chinese tree shrew (Tupaia belangeri chinensis), a small mammal genetically close to primates and has the potential as animal model for viral infections. We identified 4 putative tree shrew OASs (tOASs, including tOAS1, tOAS2, tOASL1, and tOASL2) and characterized their roles in antiviral responses. Tree shrew lost tOAS3 that was presented in human and mouse. Phylogenetic analyses based on the protein sequences showed a close relationship of tOASs with those of mammals. Constitutive mRNA expression of tOASs was found in seven tissues (heart, liver, spleen, lung, kidney, small intestine and brain). Moreover, tOASs were significantly up-regulated upon various virus infections. Overexpression of tOASs significantly inhibited DNA virus and RNA virus replications in tree shrew primary renal cells. tOAS1 and tOAS2, but not tOASL1 and tOASL2, exerted their anti-HSV activity in an RNase L-dependent pathway. Collectively, our results revealed the evolutionary conservation of tOASs in tree shrew and might offer helpful information for creating viral infection models using the Chinese tree shrew.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Tupaia/genética , 2',5'-Oligoadenilato Sintetase/química , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Evolução Molecular , Herpesvirus Humano 1/fisiologia , Família Multigênica , Especificidade de Órgãos/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima/genética , Viroses/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA