Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Ther Adv Endocrinol Metab ; 15: 20420188241282707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381518

RESUMO

As the prevalence of obesity continues to rise globally, the research on adipocytes has attracted more and more attention. In the presence of nutrient overload, adipocytes are exposed to pressures such as hypoxia, inflammation, mechanical stress, metabolite, and oxidative stress that can lead to organelle dysfunction. Endoplasmic reticulum (ER) is a vital organelle for sensing cellular pressure, and its homeostasis is essential for maintaining adipocyte function. Under conditions of excess nutrition, ER stress (ERS) will be triggered by the gathering of abnormally folded proteins in the ER lumen, resulting in the activation of a signaling response known as the unfolded protein responses (UPRs), which is a response system to relieve ERS and restore ER homeostasis. However, if the UPRs fail to rescue ER homeostasis, ERS will activate pathways to damage cells. Studies have shown a role for disturbed activation of adipocyte ERS in the pathophysiology of obesity and its complications. Prolonged or excessive ERS in adipocytes can aggravate lipolysis, insulin resistance, and apoptosis and affect the bioactive molecule production. In addition, ERS also impacts the expression of some important genes. In view of the fact that ERS influences adipocyte function through various mechanisms, targeting ERS may be a viable strategy to treat obesity. This article summarizes the effects of ERS on adipocytes during obesity.

2.
Small ; : e2406159, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39385646

RESUMO

Fluorescence imaging in the second near-infrared region (NIR-II, 1000-1700 nm) has garnered considerable attention for displaying the biological information of deep tissues. However, the lack of biocompatible contrast agents with bright NIR-II emission has hampered the precise clinical application of deep tissue imaging. Here, a lipophilic enhancement strategy employing donor-acceptor-donor (D-A-D) molecules, introducing long alkoxy chains and quaternary ammonium salts for the development of highly bright water-soluble NIR-II fluorophores (BBTD-2C-N), is described. Notably, liposome-encapsulated BBTD-2C-N nanoparticles (B-2C-N/DMPC) in aqueous solution exhibit a 1.8-fold increase in NIR-II fluorescence brightness compared to free BBTD-2C-N in methanol. Avoidance of the aggregation-caused quenching effect and enhanced NIR-II fluorescence are attributed to significantly attenuated π-π stacking interactions and maintained monodisperses in the hydrophobic liposome shell. Moreover, BBTD-2C-N demonstrates superior performance in visualizing lipid droplet-rich HeLa cells in vitro, as well as precise monitoring of adipose tissue and fatty liver in vivo. This study reveals a new avenue for the development of bright NIR-II fluorophores and precise in vivo imaging.

3.
J Adv Res ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097092

RESUMO

INTRODUCTION: A disintegrin and metalloproteinase 8 (ADAM8), a crucial regulator in macrophages, is closely associated with cardiovascular disease progression. OBJECTIVES: This study aimed to explore how ADAM8 regulates macrophage function to inhibit cardiac repair after myocardial infarction (MI). METHODS: Macrophage-specific ADAM8 knockout mice (ADAM8flox/flox, Lyz2-Cre, KO) and corresponding control mice (ADAM8flox/flox, Flox) were established using the CRISPR/Cas9 system. Bone marrow transplantation was performed, and macrophage-specific ADAM8-overexpressing adeno-associated virus (AAV6-CD68-Adam8) was produced. Finally, proteomics, RNA sequencing, and co-immunoprecipitation/mass spectrometry (COIP/MS) were used to explore the underlying mechanisms involved. RESULTS: ADAM8 was highly expressed in the plasma of patients with acute myocardial infarction (AMI) and in cardiac macrophages derived from AMI mice. ADAM8 KO mice exhibited enhanced angiogenesis, suppressed inflammation, reduced cardiac fibrosis, and improved cardiac function during AMI, which were reversed by overexpressing macrophage-specific ADAM8 and intervention with the clinical anti-angiogenic biologic bevacizumab. Bone marrow transplantation experiments produced ADAM8 KO phenotypes. RNA sequencing showed that autophagy was activated in bone marrow-derived macrophages (BMDMs) with ADAM8 KO, which was confirmed via p-mTOR Ser2448/mTOR, p62, and LC3II/I detection. Autophagy inactivation suppressed angiogenic factor release and promoted inflammation in BMDMs with ADAM8 KO. Mechanistically, ADAM8 could bind to ANXA2 and promote phosphorylation of the ANXA2 Ser26 site. ADAM8 KO impeded ANXA2 phosphorylation, inhibited mTOR Ser2448 site phosphorylation, and activated autophagy, which were demonstrated using the activation or inactivation of ANXA2 phosphorylation. CONCLUSIONS: ADAM8 was increased in cardiac macrophages after AMI. The ADAM8-ANXA2-mTOR-autophagy axis in macrophages is responsible for regulating angiogenesis and inflammation following MI. Thus, ADAM8 may be a new target in MI treatment.

4.
Heliyon ; 10(11): e32072, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912460

RESUMO

Background: Heart failure (HF) is a severe disease threatening people's health. The aim of this study is to find a significant biomarker inducive to predicting the prognosis of HF. Methods: GSE135055 and GSE161472 datasets were reanalyzed for exploring key genes related to HF. This single-center, prospective, observational cohort study enrolled 298 patients with or without HF from the Cardiology Department of Zhongda Hospital. Levels of ADAM8 were measured using ELISA kits. Major adverse cardiovascular events (MACEs) were defined as the composite end points of the first occurrence of rehospitalization because of HF or cardiac-related death during one-year follow-up. Results: (1) Bioinformatics analysis showed that ADAM8 was a key gene in HF via mainly regulating the mechanisms of extracellular matrix (ECM) organization. (2) Levels of ADAM8 were significantly increased in the HF group, compared to the non-failing (NF) group (p < 0.001), especially in patients with HFrEF (p < 0.05), and HFmEF (p < 0.05). The prevalence of HF in the high ADAM8 group (≧472.916 pg/mL) was significantly higher than in the low ADAM8 group (<472.916 pg/mL) (41.95 % vs 30.54 %, p < 0.01). (3) Correlation analysis revealed that ADAM8 was negatively correlated to the left ventricular ejection fraction (LVEF) (r = -0.272, p < 0.001). ROC analysis showed that the AUC of ADAM8 in predicting HF and predicting the MACE were 0.701 (p < 0.0001) and 0.683 (p < 0.0001), respectively. (4) Logistic and Cox regression both indicated that high ADAM8 expression can predict adverse prognosis of HF. Conclusions: ADAM8 may be a risk factor for HF, especially in cases of HFrEF and HFmEF. High ADAM8 expression in plasma was related to the decreased heart function, and can predict the adverse prognosis of HF.

5.
J Neural Eng ; 21(3)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38718787

RESUMO

Objective. Vagus nerve stimulation (VNS) is being investigated as a potential therapy for cardiovascular diseases including heart failure, cardiac arrhythmia, and hypertension. The lack of a systematic approach for controlling and tuning the VNS parameters poses a significant challenge. Closed-loop VNS strategies combined with artificial intelligence (AI) approaches offer a framework for systematically learning and adapting the optimal stimulation parameters. In this study, we presented an interactive AI framework using reinforcement learning (RL) for automated data-driven design of closed-loop VNS control systems in a computational study.Approach.Multiple simulation environments with a standard application programming interface were developed to facilitate the design and evaluation of the automated data-driven closed-loop VNS control systems. These environments simulate the hemodynamic response to multi-location VNS using biophysics-based computational models of healthy and hypertensive rat cardiovascular systems in resting and exercise states. We designed and implemented the RL-based closed-loop VNS control frameworks in the context of controlling the heart rate and the mean arterial pressure for a set point tracking task. Our experimental design included two approaches; a general policy using deep RL algorithms and a sample-efficient adaptive policy using probabilistic inference for learning and control.Main results.Our simulation results demonstrated the capabilities of the closed-loop RL-based approaches to learn optimal VNS control policies and to adapt to variations in the target set points and the underlying dynamics of the cardiovascular system. Our findings highlighted the trade-off between sample-efficiency and generalizability, providing insights for proper algorithm selection. Finally, we demonstrated that transfer learning improves the sample efficiency of deep RL algorithms allowing the development of more efficient and personalized closed-loop VNS systems.Significance.We demonstrated the capability of RL-based closed-loop VNS systems. Our approach provided a systematic adaptable framework for learning control strategies without requiring prior knowledge about the underlying dynamics.


Assuntos
Simulação por Computador , Reforço Psicológico , Estimulação do Nervo Vago , Estimulação do Nervo Vago/métodos , Animais , Ratos , Frequência Cardíaca/fisiologia , Sistema Cardiovascular , Algoritmos , Inteligência Artificial
6.
IEEE Trans Biomed Eng ; 70(10): 2764-2775, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37656644

RESUMO

We propose a nonlinear model-based control technique for regulating the heart rate and blood pressure using vagus nerve neuromodulation. The closed-loop framework is based on an in silico model of the rat cardiovascular system for the simulation of the hemodynamic response to multi-location vagal nerve stimulation. The in silico model is derived by compartmentalizing the various physiological components involved in the closed-loop cardiovascular system with intrinsic baroreflex regulation to virtually generate nominal and hypertension-related heart dynamics of rats in rest and exercise states. The controller, using a reduced cycle-averaged model, monitors the outputs from the in silico model, estimates the current state of the reduced model, and computes the optimum stimulation locations and the corresponding parameters using a nonlinear model predictive control algorithm. The results demonstrate that the proposed control strategy is robust with respect to its ability to handle setpoint tracking and disturbance rejection in different simulation scenarios.


Assuntos
Hipertensão , Estimulação do Nervo Vago , Ratos , Animais , Frequência Cardíaca/fisiologia , Pressão Sanguínea/fisiologia , Estimulação do Nervo Vago/métodos , Coração , Nervo Vago/fisiologia
7.
Nanotechnology ; 34(50)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37729885

RESUMO

Tin telluride (SnTe), as a narrow bandgap semiconductor material, has great potential for developing photodetectors with wide spectra and ultra-fast response. At the same time, it is also an important topological crystal insulator material, with different topological surface states on several common surfaces. Here, we introduce different Sn sources and control the growth of regular SnTe nanosheets along the (100) and (111) planes through the atmospheric pressure chemical vapor deposition method. It has been proven through various characterizations that the synthesized SnTe is a high-quality single crystal. In addition, the angular resolved Raman spectra of SnTe nanosheets grown on different crystal planes are first demonstrated. The experimental results showed that square SnTe nanosheets grown along the (100) plane exhibit in-plane anisotropy. At the same time, we use micro-nanofabrication technology to manufacture SnTe-based field effect transistors and photodetectors to explore their electrical and optoelectronic properties. It has been confirmed that transistors based on grown SnTe nanosheets exhibit p-type semiconductor characteristics and have a high response to infrared light. This work provides a new approach for the controllable synthesis of SnTe and adds new content to the research of SnTe-based infrared detectors.

8.
Hum Gene Ther ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542393

RESUMO

Objective: Studies have found that high expression of human Kallistatin (HKS) in adipose tissue can improve obesity and its associated comorbidities, but the underlying mechanism of specific regulation is unclear. Methods: An obesity model was built by injecting 8-week-old C57BL/6 mice (n = 6 mice per group) with Ad.Null and Ad.HKS adenovirus into epididymal adipose tissue and fed with a high-fat diet (HFD). Insulin resistance-related proteins, AKT and IRS1, were detected in the liver, subcutaneous fat, and skeletal muscle by western blotting after one month of HFD. Epididymal adipose tissue was isolated after 24 h for culture, and exosomes were extracted by differential centrifugation. Enzyme-linked immunosorbent assay detected the expression of HKS protein in serum and exosomes. To examine the role of exosomes in AML12 insulin resistance, we used epididymal adipose tissue-derived exosomes or transfected Ad.HKS into mature 3T3L1-derived exosomes to interfere with palmitic acid (PA)-induced mouse AML12 insulin resistance model. GW4869 was used to inhibit exosome biogenesis and release. Results: Our results showed that HFD-induced mice with high expression of HKS in epididymal adipose tissue had slower weight gain, lower serum triglycerides, reduced free fatty acids, and improved liver insulin resistance compared with the Ad.Null group. We also demonstrated that HKS was enriched in epididymal adipose tissue-derived exosomes and released through the exosome pathway. In PA-induced AML12 cells, insulin resistance was alleviated after incubation of the HKS-related exosome; this effect was reversed with GW4869. Conclusion: High expression of HKS in epididymal adipose tissue could lead to its exocrine secretion in the form of exosomes and improve liver insulin resistance by promoting the phosphorylation of AKT. Production of high HKS vesicles might be a possible way to alleviate insulin resistance associated with obesity.

10.
Sci Bull (Beijing) ; 68(16): 1757-1763, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37507260

RESUMO

The study of phonon polaritons in van der Waals materials at the nanoscale has gained significant attention in recent years due to its potential applications in nanophotonics. The unique properties of these materials, such as their ability to support sub-diffraction imaging, sensing, and hyperlenses, have made them a promising avenue for the development of new techniques in the field. Despite these advancements, there still exists a challenge in achieving dynamically reversible manipulation of phonon polaritons in these materials due to their insulating properties. In this study, we present experimental results on the reversible manipulation of anisotropic phonon polaritons in α-MoO3 on top of a VO2 film, a phase-change material known for its dramatic changes in dielectric properties between its insulating and metallic states. Our findings demonstrate that the engineered VO2 film enables a switch in the propagation of polaritons in the mid-infrared region by modifying the dielectric properties of the film through temperature changes. Our results represent a promising approach to effectively control the flow of light energy at the nanoscale and offer the potential for the design and fabrication of integrated, flat sub-diffraction polaritonic devices. This study adds to the growing body of work in the field of nanophotonics and highlights the importance of considering phase-change materials for the development of new techniques in this field.

11.
Int J Cardiol ; 387: 131128, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356730

RESUMO

Cardiac fibrosis following myocardial infarction is a major risk factor for heart failure. Recent evidence suggests that miR-195-3p is up-regulated in fibrotic diseases, including kidney and liver fibrosis. However, its function and underlying mechanisms in cardiac fibrosis after MI remain unknown. To investigate the role of miR-195-3p in MI-induced cardiac fibrosis, we established acute MI models by ligating adult C57B/L6 mice LAD coronary artery while sham-operated mice were used as controls. In vivo inhibition of miR-195-3p was conducted by intramyocardial injection of AAV9-anti-miR-195-3p. In vitro overexpression and inhibition of miR-195-3p were performed by transfecting cultured Cardiac Fibroblasts (CFs) with synthetic miRNA mimic and inhibitor. Our results showed that MI induced the expression of miR-195-3p and that inhibition of miR-195-3p reduced myofibroblast differentiation and collagen deposition and protected cardiac function. In vitro stimulation of CFs with TGF-ß1 resulted in a significant increase in miR-195-3p expression. Inhibition of miR-195-3p attenuated the TGF-ß1-induced expression of ECM proteins, migration, and proliferation. PTEN expression was significantly reduced in the hearts of MI mice, in activated CFs, and in CFs transfected with miR-195-3p mimic. Inhibition of miR-195-3p markedly restored PTEN expression in MI mice and TGF-ß1-treated CFs. In conclusion, this study highlights the crucial role of miR-195-3p in promoting cardiac fibrosis and dysfunction after MI. Inhibiting miR-195-3p could be a promising therapeutic strategy for preventing cardiac fibrosis and preserving cardiac function after MI. Additionally, the study sheds light on the mechanisms underlying the effects of miR-195-3p on fibrosis, including its regulation of PTEN/AKT pathway.


Assuntos
MicroRNAs , Infarto do Miocárdio , Camundongos , Animais , Miocárdio/patologia , Fator de Crescimento Transformador beta1 , Fibroblastos , MicroRNAs/metabolismo , Fibrose
12.
Cell Signal ; 109: 110744, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271349

RESUMO

Myocardial infarction (MI) is one of the most dangerous cardiovascular events. Cardiac fibrosis is a common pathological feature of remodeling after injury that is related to adverse clinical results with no effective treatment. Previous studies have confirmed that TRIM44, an E3 ligase, can promote the proliferation and migration of various tumor cells. However, the role of TRIM44 in cardiac fibrosis remains unknown. Models of TGF-ß1 stimulation and MI-induced fibrosis were established to investigate the role and potential underlying mechanism of TRIM44 in cardiac fibrosis. The results showed that cardiac fibrosis was significantly inhibited after TRIM44 knockdown in a mouse model of MI, while it was enhanced when TRIM44 was overexpressed. Furthermore, in vitro studies showed that fibrosis markers were significantly reduced in cardiac fibroblasts (CFs) with TRIM44 knockdown, whereas TRIM44 overexpression promoted the expression of fibrosis markers. Mechanistically, TRIM44 maintains TAK1 stability by inhibiting the degradation of k48-linked polyubiquitination-mediated ubiquitination, thereby increasing phosphorylated TAK1 expression in the fibrotic environment and activating MAPKs to promote fibrosis. Pharmacological inhibition of TAK1 phosphorylation reversed the fibrogenic effects of TRIM44 overexpression. Combined, these results suggest that TRIM44 is a potential therapeutic target for cardiac fibrosis.


Assuntos
Infarto do Miocárdio , Camundongos , Animais , Infarto do Miocárdio/metabolismo , Fibroblastos/metabolismo , Modelos Animais de Doenças , Coração , Fibrose , Fator de Crescimento Transformador beta1/metabolismo , Miocárdio/metabolismo
13.
Cell Signal ; 106: 110637, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36813150

RESUMO

OBJECTIVE: Adipose tissue remodeling is a dynamic process that is pathologically expedited in the obese state and is closely related to obesity-associated disease progression. This study aimed to explore the effects of human kallistatin (HKS) on adipose tissue remodeling and obesity-related metabolic disorders in mice fed with a high-fat diet (HFD). METHODS: Adenovirus-mediated HKS cDNA (Ad.HKS) and a blank adenovirus (Ad.Null) were constructed and injected into the epididymal white adipose tissue (eWAT) of 8-weeks-old male C57B/L mice. The mice were fed normal or HFD for 28 days. The body weight and circulating lipids levels were assessed. Intraperitoneal glucose tolerance test (IGTT) and insulin tolerance test (ITT) were also performed. Oil-red O staining was used to assess the extent of lipid deposition in the liver. Immunohistochemistry and HE staining were used to measure HKS expression, adipose tissue morphology, and macrophage infiltration. Western blot and qRT-PCR were used to evaluate the expression of adipose function-related factors. RESULTS: At the end of the experiment, the expression of HKS in the serum and eWAT of the Ad.HKS group was higher than in the Ad.Null group. Furthermore, Ad.HKS mice had lower body weight and decreased serum and liver lipid levels after four weeks of HFD feeding. IGTT and ITT showed that HKS treatment maintained balanced glucose homeostasis. Additionally, inguinal white adipose tissue (iWAT) and eWAT in Ad.HKS mice had a higher number of smaller-size adipocytes and had less macrophage infiltration than Ad.Null group. HKS significantly increased the mRNA levels of adiponectin, vaspin, and eNOS. In contrast, HKS decreased RBP4 and TNFα levels in the adipose tissues. Western blot results showed that local injection of HKS significantly upregulated the protein expressions of SIRT1, p-AMPK, IRS1, p-AKT, and GLUT4 in eWAT. CONCLUSIONS: HKS injection in eWAT improves HFD-induced adipose tissue remodeling and function, thus significantly improving weight gain and dysregulation of glucose and lipid homeostasis in mice.


Assuntos
Gordura Intra-Abdominal , Serpinas , Humanos , Masculino , Camundongos , Animais , Camundongos Obesos , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Peso Corporal , Glucose/metabolismo , Dieta Hiperlipídica , Lipídeos , Terapia Genética , Camundongos Endogâmicos C57BL , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Serpinas/genética , Serpinas/metabolismo
14.
Adipocyte ; 12(1): 2169227, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36654490

RESUMO

High-fat diet (HFD) can cause obesity, inducing dysregulation of the visceral adipose tissue (VAT). This study aimed to explore potential biological pathways and hub genes involved in obese VAT, and for that, bioinformatic analysis of multiple datasets was performed. The expression profiles (GSE30247, GSE167311 and GSE79434) were downloaded from Gene Expression Omnibus. Overlapping differentially expressed genes (ODEGs) between normal diet and HFD groups in GSE30247 and GSE167311 were selected to run protein-protein interaction network, GO and KEGG analysis. The hub genes in ODEGs were screened by Cytoscape software and further verified in GSE79434 and obese mouse model. A total of 747 ODEGs (599 up-regulated and 148 down-regulated) were screened, and the GO and KEGG analysis showed that the up-regulated ODEGs were significantly enriched in inflammatory response and extracellular matrix receptor interaction pathways. On the other hand, the down-regulated ODEGs were involved in metabolic pathways; however, there were no significant KEGG pathways. Furthermore, six hub genes, Mki67, Rac2, Itgb2, Emr1, Tyrobp and Csf1r were acquired. These pathways and genes were verified in GSE79434 and VAT of obese mice. This study revealed that HFD induced VAT expansion, inflammation and fibrosis, and the hub genes could be used as therapeutic biomarkers in obesity.


Assuntos
Dieta Hiperlipídica , Gordura Intra-Abdominal , Animais , Camundongos , Biomarcadores/metabolismo , Biologia Computacional , Gordura Intra-Abdominal/metabolismo , Obesidade/genética , Obesidade/metabolismo
15.
Nanomedicine ; 47: 102618, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270453

RESUMO

Ferroptosis plays an important role in ischemia-reperfusion (I/R)-induced cardiac injury and there are many defects in current targeted delivery of miRNAs for the treatment of ferroptosis. We herein report a unique hydrogel (Gel) that can be triggered by a near-infrared-II (NIR-II) light with deep tissue penetration and biocompatible maximum permissible exposure (MPE) value for in situ treatment after I/R. The mir-196c-3p mimic (mimics) and photothermal nanoparticles (BTN) were co-encapsulated in an injectable Gel (mimics + Gel/BTN) with NIR-II light-triggered release. Using 1064 nm light irradiation, local microenvironment photothermal-triggered on-demand noninvasive controllable delivery of miRNA was achieved, aiming to inhibit I/R-induced ferroptosis. Consequently, declined ferroptosis in cardiomyocytes and improved cardiac function, survival rate in rats was achieved through the controlled release of Gel/BTN mimics in I/R model to simultaneously inhibit ferroptosis hub genes NOX4, P53, and LOX expression.


Assuntos
Traumatismo por Reperfusão , Animais , Ratos
16.
PeerJ ; 10: e14346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438585

RESUMO

Background: The triglycerides-glucose index (TyG) and the triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) are simple indicators for assessing insulin resistance in epidemiological studies. We aimed to clarify the relationship between indicators of insulin resistance and prognosis in non-diabetic acute myocardial infarction (AMI) patients. Methods: A total of 1,648 AMI patients without diabetes were enrolled from the Department of Cardiology, Zhongda Hospital, between 2012.03 and 2018.12. The medical history, laboratory and imaging data of patients were collected through the medical record system, and all-cause death events were recorded. Pearson analysis was used to study the correlation among different variables. Logistic regression analysis was used to analyze the predictive effect of TyG and TG/HDL-C in in-hospital death of AMI patients. Results: 1. In AMI group, the TyG index was significantly increased in death groups compared to no-death groups (P = 0.025). TG/HDL-C was not significantly increased in the death group of AMI patients (P = 0.588). The patients were respectively divided into Q1-Q4 groups and T1-T4 groups according to the quartiles of TyG and TG/HDL-C. The trends of in-hospital mortality in the Q4 group of TyG and T4 group of TG/HDL-C were higher than in other groups, although these differences were not significant. 2. Pearson correlation analysis showed that TyG was positively correlated with lipid-related markers, including ApoB (r = 0.248, P < 0.001), total cholesterol (TC) (r = 0.270, P < 0.001), low-density lipoprotein cholesterol (LDL-C) (r = 0.238, P < 0.001). Spearman analysis showed that TG/HDL-C was also positively associated with TC (r = 0.107, P < 0.001), ApoB (r = 0.180, P < 0.001) and LDL-C (r = 0.164, P < 0.001). 3. Logistic regression analysis showed that TyG (OR = 3.106, 95% CI [2.122-4.547], P < 0.001) and TG/HDL-C (OR = 1.167, 95% CI [1.062-1.282], P = 0.001) were both important factors to predict the in-hospital death of AMI patients without diabetes. Conclusions: TyG index and TG/HDL-C, as emerged simple markers of insulin resistance, were both important predictors of in-hospital death in AMI patients without diabetes.


Assuntos
Resistência à Insulina , Infarto do Miocárdio , Humanos , Glucose , Triglicerídeos , Mortalidade Hospitalar , HDL-Colesterol , LDL-Colesterol , Apolipoproteínas B
17.
Perfusion ; : 2676591221137482, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321746

RESUMO

INTRODUCTION: Previous studies have shown that fibroblast growth factor 21 (FGF21) is involved in the ventricular remodeling process in heart failure with preserved ejection fraction (HFpEF). We hypothesized that high levels of FGF21 correlated with the ventricular remodeling of heart failure patients with mildly reduced (HFmrEF) and reduced ejection fraction (HFrEF). METHODS: A total of 203 participants with HFmrEF or HFrEF were enrolled and followed up from June 2018 to June 2021. 68 subjects without heart failure (HF) underwent physical examinations during the same time were selected as the control group. The primary endpoint was the occurrence of major adverse cardiovascular events (MACEs), which were defined as all-cause or cardiac mortality and rehospitalization for decompensation. Serum FGF21 levels were measured early the next morning after admission using enzyme-linked immunosorbent assay (ELISA). RESULTS: The FGF21 levels were significantly higher in patients with HFmrEF or HFrEF than that in the control group (213.57 ± 42.65 pg/mL, 222.93 ± 34.36 pg/mL vs 171.00 ± 12.86 pg/mL, p < .001). The serum levels of FGF21 and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were both higher in the endpoint event group than those of non-endpoint event group regardless of the HFmrEF or HFrEF group (p < .001). Spearman's correlation revealed that FGF21 was positively correlated with left ventricular end-systolic diameter left ventricular end-diastolic diameter left ventricular mass index (p < .01). Moreover, there was a negative correlation between FGF21 and left ventricular ejection fraction in addition to relative wall thickness (p < .001). The area under the receiver operating characteristic (ROC) curve (AUC) of FGF21 was 0.874. The optimal cut-off value of FGF21 determined by ROC curve was 210.11 pg/mL. The Kaplan-Meier analysis demonstrated that the low FGF21 levels group had an increased MACE-free survival rate compared with the high FGF21 levels group. On univariate and multivariate Cox analysis, it was seen that both serum FGF21 and NT-proBNP were independent predictors of a poor prognosis in HF patients. CONCLUSION: Baseline levels of FGF21 and NT-proBNP were related to the ventricular remodeling of patients with a mildly reduced or reduced ejection fraction. FGF21 and NT-proBNP both had good prognostic value for MACEs in heart failure patients with a mildly reduced and reduced ejection fraction.

18.
IEEE Access ; 10: 36268-36285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199437

RESUMO

Closed-loop Vagus Nerve Stimulation (VNS) based on physiological feedback signals is a promising approach to regulate organ functions and develop therapeutic devices. Designing closed-loop neurostimulation systems requires simulation environments and computing infrastructures that support i) modeling the physiological responses of organs under neuromodulation, also known as physiological models, and ii) the interaction between the physiological models and the neuromodulation control algorithms. However, existing simulation platforms do not support closed-loop VNS control systems modeling without extensive rewriting of computer code and manual deployment and configuration of programs. The CONTROL-CORE project aims to develop a flexible software platform for designing and implementing closed-loop VNS systems. This paper proposes the software architecture and the elements of the CONTROL-CORE platform that allow the interaction between a controller and a physiological model in feedback. CONTROL-CORE facilitates modular simulation and deployment of closed-loop peripheral neuromodulation control systems, spanning multiple organizations securely and concurrently. CONTROL-CORE allows simulations to run on different operating systems, be developed in various programming languages (such as Matlab, Python, C++, and Verilog), and be run locally, in containers, and in a distributed fashion. The CONTROL-CORE platform allows users to create tools and testbenches to facilitate sophisticated simulation experiments. We tested the CONTROL-CORE platform in the context of closed-loop control of cardiac physiological models, including pulsatile and nonpulsatile rat models. These were tested using various controllers such as Model Predictive Control and Long-Short-Term Memory based controllers. Our wide range of use cases and evaluations show the performance, flexibility, and usability of the CONTROL-CORE platform.

19.
iScience ; 25(8): 104780, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35982795

RESUMO

The role of tripartite motif (TRIM) 38, a ubiquitin E3 ligase regulating various pathophysiological processes, in cardiac fibrosis remains unclear. Here, a model of angiotensin II and myocardial infarction (MI)-induced fibrosis was established to explore its role in cardiac fibrosis and its underlying mechanisms. Cardiac fibrosis in the mouse MI model was mitigated by TRIM38 overexpression, but aggravated by its depletion. Consistently, in vitro overexpression or knockdown of TRIM38 ameliorated or aggravated the proliferation and secretion of cardiac fibroblasts (CFs) exposed to fibrotic stimulation, respectively. Mechanistically, TRIM38 suppressed cardiac fibrosis progression by attenuating TAK1/MAPK signaling. Inhibiting TAK1/MAPK signaling with a pharmacological inhibitor greatly reversed the effects of TRIM38 knockdown on CF secretion. Specifically, TRIM38 interacted with and "targeted" TAB2 and TAB3 for degradation, subsequently inhibiting TAK1 phosphorylation and negatively regulating MAPK signaling. These findings can help develop therapeutic strategies to treat and prevent cardiac fibrosis.

20.
Cell Mol Biol Lett ; 27(1): 55, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836108

RESUMO

BACKGROUND: METTL3 is the core catalytic enzyme in m6A and is involved in a variety of cardiovascular diseases. However, whether and how METTL3 plays a role during angiotensin II (Ang-II)-induced myocardial hypertrophy is still unknown. METHODS: Neonatal rat cardiomyocytes (NRCMs) and C57BL/6J mice were treated with Ang-II to induce myocardial hypertrophy. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. Gene function was verified by knockdown and/or overexpression, respectively. Luciferase and RNA immunoprecipitation (RIP) assays were used to verify interactions among multiple genes. Wheat germ agglutinin (WGA), hematoxylin and eosin (H&E), and immunofluorescence were used to examine myocardial size. m6A methylation was detected by a colorimetric kit. RESULTS: METTL3 and miR-221/222 expression and m6A levels were significantly increased in response to Ang-II stimulation. Knockdown of METTL3 or miR-221/222 could completely abolish the ability of NRCMs to undergo hypertrophy. The expression of miR-221/222 was positively regulated by METTL3, and the levels of pri-miR-221/222 that bind to DGCR8 or form m6A methylation were promoted by METTL3 in NRCMs. The effect of METTL3 knockdown on hypertrophy was antagonized by miR-221/222 overexpression. Mechanically, Wnt/ß-catenin signaling was activated during hypertrophy and restrained by METTL3 or miR-221/222 inhibition. The Wnt/ß-catenin antagonist DKK2 was directly targeted by miR-221/222, and the effect of miR-221/222 inhibitor on Wnt/ß-catenin was abolished after inhibition of DKK2. Finally, AAV9-mediated cardiac METTL3 knockdown was able to attenuate Ang-II-induced cardiac hypertrophy in mouse model. CONCLUSIONS: Our findings suggest that METTL3 positively modulates the pri-miR221/222 maturation process in an m6A-dependent manner and subsequently activates Wnt/ß-catenin signaling by inhibiting DKK2, thus promoting Ang-II-induced cardiac hypertrophy. AAV9-mediated cardiac METTL3 knockdown could be a therapeutic for pathological myocardial hypertrophy.


Assuntos
Angiotensina II , MicroRNAs , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA