Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Expert Rev Mol Diagn ; 20(7): 737-748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32310684

RESUMO

BACKGROUND: A key objective in glaucoma is to identify those at risk of rapid progression and blindness. Recently, a novel first-in-man method for visualising apoptotic retinal cells called DARC (Detection-of-Apoptosing-Retinal-Cells) was reported. The aim was to develop an automatic CNN-aided method of DARC spot detection to enable prediction of glaucoma progression. METHODS: Anonymised DARC images were acquired from healthy control (n=40) and glaucoma (n=20) Phase 2 clinical trial subjects (ISRCTN10751859) from which 5 observers manually counted spots. The CNN-aided algorithm was trained and validated using manual counts from control subjects, and then tested on glaucoma eyes. RESULTS: The algorithm had 97.0% accuracy, 91.1% sensitivity and 97.1% specificity to spot detection when compared to manual grading of 50% controls.  It was next tested on glaucoma patient eyes defined as progressing or stable based on a significant (p<0.05) rate of progression using OCT-retinal nerve fibre layer measurements at 18 months. It demonstrated 85.7% sensitivity, 91.7% specificity with AUC of 0.89, and a significantly (p=0.0044) greater DARC count in those patients who later progressed. CONCLUSION: This CNN-enabled algorithm provides an automated and objective measure of DARC, promoting its use as an AI-aided biomarker for predicting glaucoma progression and testing new drugs.


Assuntos
Algoritmos , Apoptose , Glaucoma/patologia , Redes Neurais de Computação , Células Ganglionares da Retina/patologia , Adulto , Idoso , Anexina A5/administração & dosagem , Automação , Ensaios Clínicos Fase II como Assunto , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA