Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Obes Sci Pract ; 10(1): e716, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263987

RESUMO

Introduction: Adipose triglyceride lipase (ATGL) is a crucial enzyme responsible for the release of fatty acids from various tissues. The expression of ATGL is regulated by insulin and this enzyme is linked to Insulin resistance (IR). On the other hand, ATGL-mediated lipolysis is connected to macrophage function and thus, ATGL is involved in inflammation and the pathogenesis of lipid-related disorders. This study aimed to investigate the correlation between ATGL, obesity, Metabolic Syndrome (MetS), and inflammation. Methods: A total of 100 participants, including 50 individuals with obesity and 50 healthy participants, were recruited for this study and underwent comprehensive clinical evaluations. Blood samples were collected to measure plasma lipid profiles, glycemic indices, and liver function tests. Additionally, peripheral blood mononuclear cells (PBMCs) were isolated and used for the assessment of the gene expression of ATGL, using real-time PCR. Furthermore, PBMCs were cultured and exposed to lipopolysaccharides (LPS) with simultaneous ATGL inhibition, and the gene expression of inflammatory cytokines, along with the secretion of prostaglandin E2 (PGE2), were measured. Results: The gene expression of ATGL was significantly elevated in PBMCs obtained from participants with obesity and was particularly higher in those diagnosed with MetS. It exhibited a correlation with insulin levels and Homeostatic Model Assessment for IR (HOMA-IR), and it was associated with lipid accumulation in the liver. Stimulation with LPS increased ATGL expression in PBMCs, while inhibition of ATGL attenuated the inflammatory responses induced by LPS. Conclusions: Obesity and MetS were associated with dysregulation of ATGL. ATGL might play a role in the upregulation of inflammatory cytokines and act as a significant contributor to the development of metabolic abnormalities related to obesity.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2507-2522, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37855932

RESUMO

Since the role of Nrf2 in cancer cell survival has been highlighted, the pharmacological modulation of the Nrf2-Keap1 pathway may provide new opportunities for cancer treatment. This study purposed to use ubiquinone (Q10) as an antioxidant and catharanthine alkaloid as a cAMP inducer suppressing HepG2 cells by reducing Nrf2 level. The effects of Q10 and catharanthine on HepG2 cells in terms of viability were analyzed by MTT test. MTT results were used to determine the effective concentration of both drugs for the subsequent treatment and analysis. Subsequently, the effects of Q10 and catharanthine in a single and combined manner on oxidant/antioxidant status, apoptosis, metastasis, and drug resistance of HepG2 cells were investigated by related methods. Both Q10 and catharanthine decreased the level of oxidative stress products and increased antioxidant capacity in HepG2 cells. Nrf2 gene expression decreased by Q10, but catharanthine unexpectedly increased it. Following Nrf2 alterations, the expression levels of MMP-9 and MRP1 involved in metastasis and drug resistance were significantly and dose-dependently decreased by Q10, while catharanthine slightly increased both. However, both drugs increased caspase 3/7 activity and apoptosis rate, and the effect of Q10 on apoptosis was stronger than that of catharanthine. Most of the effects of the combination treatments were similar to those of the Q10 single treatment and indicated the dominant effect over the catharanthine component. Despite the antioxidant and apoptotic properties of both agents, Q10 was better than catharanthine in inducing apoptosis, counteracting drug resistance, and metastasis in HepG2 cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Alcaloides de Vinca , Humanos , Antioxidantes/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Estresse Oxidativo , Células Hep G2 , Apoptose
3.
BMC Complement Med Ther ; 23(1): 315, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697354

RESUMO

BACKGROUND: Excessive extracellular matrix (ECM) deposition in adipose tissue is a hallmark of fibrosis, leading to disrupted adipose tissue homeostasis and metabolic dysfunction. Hesperetin, a flavonoid compound, has shown promising anti-inflammatory, anti-obesity and anti-diabetic properties. Therefore, we investigated the anti-fibrotic effects of hesperetin, through targeting ECM components and matrix metalloproteinase enzymes. METHODS: 3T3-L1 cells were cultured in DMEM, containing 10% FBS and 1% penicillin/streptomycin. Cells were treated with a range of hesperetin concentrations, and the cell viability was determined using MTT assay. Subsequently, the expression of genes encoding collagen VI, osteopontin, matrix metalloproteinase-2 (Mmp-2) and Mmp-9 was analyzed using specific primers and real-time PCR technique. To evaluate protein levels of collagen VI and osteopontin, Western blotting was performed. RESULTS: Hesperetin affected the viability of 3T3-L1 adipocytes with IC50 of 447.4 µM, 339.2 µM and 258.8 µM (24 h, 48 and 72 h, respectively). Hesperetin significantly reduced the gene and protein expression of both collagen VI and osteopontin in 3T3-L1 pre-adipocytes, in a time- and dose-dependent manner. Hesperetin was also able to cause a remarkable decline in gene expression of Mmp2 and Mmp9. CONCLUSION: Hesperetin could potently reduce the production of markers of adipose tissue fibrosis and might be considered a potential anti-fibrotic compound in obesity. Thus, hesperetin has the potency to be used for the treatment of obesity-associated fibrosis.


Assuntos
Metaloproteinase 2 da Matriz , Osteopontina , Adipócitos , Tecido Adiposo
4.
DNA Cell Biol ; 42(2): 82-90, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36730721

RESUMO

The present study was designed to evaluate the effects of resveratrol, atorvastatin, and a combination of resveratrol and atorvastatin on expression levels of genes involved in the cholesterol metabolic pathway in the fatty liver of C57/BL6 mice. A high-fat diet was used to induce fatty liver in C57/BL6 mice treated with resveratrol, atorvastatin, or a combination of resveratrol and atorvastatin. Pathological and biochemical studies were performed. In addition, hepatic gene expressions of ATP-binding cassette transporter A1 (ABCA1), ABCG1, liver X receptor (LXR)α, scavenger receptor B1 (SR-B1), low-density lipoprotein receptor (LDLR), and miR33 were evaluated by the real-time PCR method, and the Western blot method was used to measure the ABCA1, ABCG1, and LXRα protein levels. Resveratrol and atorvastatin reduced fat accumulation in the liver of mice with fatty liver, and this effect was correlated with decreased blood glucose levels, triglyceride, cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol blood levels compared with the positive control (PC) group. In contrast to the animals of the PC group, fatty liver groups that received resveratrol and atorvastatin had a significant effect on the mRNA levels of the ABCA1, ABCG1, LXRα, SR-B1, LDLR, and miR33 genes. Moreover, resveratrol and atorvastatin administration elevated ABCA1 and ABCG1 and reduced LXRα protein expression. Obtained results showed that resveratrol and atorvastatin combination therapy can improve nonalcoholic fatty liver disease by targeting genes involved in cholesterol metabolism and miR33.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Atorvastatina/farmacologia , Resveratrol/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Dieta Hiperlipídica/efeitos adversos , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , MicroRNAs/genética
5.
Oxid Med Cell Longev ; 2023: 7285036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647426

RESUMO

Background: Available data suggest inhibition of the pancreatic local-renin-angiotensin system (RAS) reduces tissue complications of diabetes. The purpose of the present study was to investigate the effect of hydroalcoholic seed extract of Securigera securidaca (S. securidaca) (HESS) on the pancreatic local-RAS and its alternative pathway. Methods: Three doses of HESS were orally administered to three groups of diabetic male Wistar rats, and the results were compared with both diabetic and healthy control groups. After 35 days of treatment, the groups were assessed for the levels of pancreatic local-RAS components, including renin, angiotensinogen, ACE, and Ang II, as well as ACE2 and Ang-(1-7) in the alternative pathway. The effect of herbal medicine treatment on tissue damage status was investigated by evaluating tissue levels of oxidative stress, proinflammatory and anti-inflammatory cytokines, and through histopathological examination of the pancreas. Results: HESS showed a dose-dependent palliative effect on the tissue oxidative stress profile (P < 0.05) as well as the levels of pancreatic local-RAS components (P < 0.05), compared to diabetic control group. Considering the interrelationship between tissue oxidative stress and local-RAS activity, the moderating effect of HESS on this relationship could be attributed to the increase in total tissue antioxidant capacity (TAC) and pancreatic Ang-(1-7) concentration. Decrease in local-RAS activity was associated with decrease in the tissue levels of inflammatory cytokines (IL1, IL6, and TNFα) (P < 0.05) and increase in the levels of anti-inflammatory cytokine of IL-10 (P < 0.05). In addition, histological results were consistent with tissue biochemical results. Conclusions: Due to the reduction of local pancreatic RAS activity as well as oxidative stress and proinflammatory cytokines following treatment with HESS, S. securidaca seed can be proposed as a suitable herbal supplement in the drug-treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental , Extratos Vegetais , Securidaca , Animais , Masculino , Ratos , Angiotensina II , Citocinas/metabolismo , Modelos Animais , Pâncreas , Extratos Vegetais/farmacologia , Ratos Wistar , Sistema Renina-Angiotensina , Securidaca/química , Sementes/química , Estreptozocina , Diabetes Mellitus Experimental/metabolismo
6.
Lab Med ; 54(3): 262-269, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36219707

RESUMO

OBJECTIVE: Gestational diabetes mellitus (GDM) is closely related to obesity, adipose tissue, and adipokines. Adiponectin-homologous adipokines with anti-inflammatory properties, including C1q/TNF-related protein 3 (CTRP3) and CTRP9, regulate glucose and lipid metabolism, which was measured in pregnant women with GDM with the aim to assess their circulating levels and their relation with inflammatory cytokines and other biochemical data. METHODS: Serum levels of CTRP3, CTRP9, adiponectin, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were measured in 43 subjects with GDM and 42 healthy controls by enzyme-linked immunosorbent assay. RESULTS: Serum levels of adiponectin and CTRP3 were lower in GDM subjects than in controls, whereas CTRP9, TNF-α, and IL-6 showed higher concentrations in subjects with GDM than in controls. In the subjects with GDM, there was a significant association of CTRP3 with homeostasis model assessment of insulin resistance (HOMA-IR), body mass index, and triglycerides, whereas CTRP9 is associated with TNF-α and HOMA-IR. CONCLUSION: The differences in the assessed levels of CTRP3 and CTRP9 suggest a possible relation with the pathogenesis of GDM, in particular insulin resistance, which showed significant association with both adipokines.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Humanos , Feminino , Gravidez , Resistência à Insulina/fisiologia , Citocinas , Fator de Necrose Tumoral alfa , Adiponectina , Complemento C1q/metabolismo , Adipocinas/metabolismo , Interleucina-6
7.
Curr Pharm Des ; 28(16): 1367-1372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35366766

RESUMO

BACKGROUND: Nephropathy diabetes is one of the important causes of death and a more prevalent cause of end-stage renal disease. OBJECTIVE: The present study investigated the effect of applying spironolactone and captopril and their combination on some renal performance indices and cholesterol-efflux-related gene expression in nephropathy diabetic rats. METHODS: Intraperitoneal injection of streptozotocin was used to induce diabetes in rats. FBS, creatinine, and BUN were assayed using the calorimetry technique; also, urine microalbumin was assayed by ELISA. Hepatic gene expressions of ABCA1, ABCG1, and miR-33 were evaluated by the real-time PCR method. RESULTS: FBS levels in the captopril-treated group were significantly decreased compared with the untreated diabetic group. BUN levels of treated groups with captopril and a combination of captopril + spironolactone were significantly increased. GFR of both treated diabetic groups with captopril and spironolactone was significantly lower than an untreated diabetic group. ABCA1 gene expression in hepatic cells of the combination of spironolactone + captopril treated group was significantly increased compared to other treated and untreated diabetic groups. The hepatic expression of the ABCG1 gene in the treated and untreated diabetic groups was significantly lower than in the control group. Treatment of the diabetic group with only combination therapy decreased the hepatic gene expression of miR-33 significantly. CONCLUSION: Obtained results suggest that S+C combination therapy can improve nephropathy and diabetes disorders by targeting the ABCA1 and miR-33 gene expression. It is suggested that miR-33 and ABCA1 genes evaluation could be a new therapeutic strategy for nephropathy diabetes remediation.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , MicroRNAs , Transportador 1 de Cassete de Ligação de ATP , Animais , Captopril/metabolismo , Captopril/farmacologia , Captopril/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Rim , MicroRNAs/metabolismo , Ratos , Ratos Wistar , Espironolactona/metabolismo , Espironolactona/farmacologia , Espironolactona/uso terapêutico
8.
Front Oncol ; 12: 1096438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713521

RESUMO

Introduction: The present study tried to provide insights into the expression pattern and diagnostic significance of the IGF-1 axis main mediators in three main primary bone tumor types with different degrees of severity. Methods: The real-time qRT-PCR (to analyze IGF-1R gene expression), the immunohistochemistry (to measure IGF-1R protein), and the ELISA assay (to assess the circulating level of IGF-1, IGFBP-1, and IGFBP-3) were applied to confirm this hypothesis. A total number of 180 bone tissues (90 tumors and 90 noncancerous adjacent tissues) and 120 blood samples drained from 90 patients with bone tumors and 30 healthy controls were enrolled in the study. The association of insulin-like growth factor (IGF)-1 axis expression pattern with the patient's clinical pathological characteristics and tumor aggressive features, the diagnostic and predictive values were assessed for all tumor groups. Results: A significantly elevated level of IGF-1R gene and protein was detected in bone tumors compared to the noncancerous bone tissues that were prominent in osteosarcoma and Ewing sarcoma compared to the GCT group. The positive association of the IGF-1R gene and protein level with tumor grade, metastasis, and recurrence was detected in the osteosarcoma and Ewing sarcoma groups. The circulating level of IGF-1, IGFPB-1, and IGFBP-3 were increased in osteosarcoma and Ewing sarcoma and GCT groups that were correlated significantly to the tumor severity. The ability of the IGF-1 axis to discriminate between bone tumors also malignant and benign tumors was considerable. Discussion: In summary, our data suggested that IGF-1R, IGF-1, IGFBP-1, and IGFBP-3 levels are associated with bone tumor malignancy, metastasis, and recurrence that might serve as biomarkers for osteosarcoma and Ewing sarcoma recurrence.

9.
Reprod Biol Endocrinol ; 19(1): 104, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233693

RESUMO

Structural and physiological changes in sperm and semen parameters reduce fertility in diabetic patients. Securigera Securidaca (S. Securidaca) seed is a herbal medicine with hypoglycemic, antioxidant, and anti-hypertensive effects. The question now is whether this herbal medicine improves fertility in diabetic males. The study aimed to evaluate the effects of hydroalcoholic extract of S. Securidaca seeds (HESS), glibenclamide and a combination of both on fertility in hyperglycemic rats by comparing histological and some biochemical changes in testicular tissue and sperm parameters. The treatment protocol included administration of three doses of HESS and one dose of glibenclamide, as well as treatment with both in diabetic Wistar diabetic rats and comparison of the results with untrated groups. The quality of the testicular tissue as well as histometric parameters and spermatogenesis indices were evaluated during histopathological examination. Epididymal sperm analysis including sperm motility, viability, abnormalities, maturity, and chromatin structure were studied. The effect of HESS on the expression of LDH and FGF21 genes and tissue levels of glycogen, lactate, and total antioxidant capacity in testicular tissue was investigated and compared with glibenclamide. HESS improved sperm parameters in diabetic rats but showed little restorative effect on damaged testicular tissue. In this regard, glibenclamide was more effective than the highest dose of HESS and its combination with HESS enhanced its effectiveness so that histological tissue characteristics and sperm parameters were were comparable to those of healthy rats. The expression level of testicular FGF21 gene increased in diabetic rats, which intensified after treatment with HESS as well as glibenclamide. The combination of HESS and glibenclamide restored the expression level of testicular LDH gene, as well as tissue storage of glycogen, lactate and LDH activity, and serum testosterone to the levels near healthy control. S. Securidaca seeds can be considered as an effective supplement in combination with hypoglycemic drugs to prevent infertility complications in diabetes.


Assuntos
Fatores de Crescimento de Fibroblastos/biossíntese , Glibureto/administração & dosagem , Glicogênio/metabolismo , Hiperglicemia/metabolismo , L-Lactato Desidrogenase/biossíntese , Securidaca , Espermatozoides/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Quimioterapia Combinada , Etanol , Expressão Gênica , Hiperglicemia/tratamento farmacológico , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Sementes , Testículo/efeitos dos fármacos , Testículo/metabolismo , Água
10.
Biol Proced Online ; 23(1): 8, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618659

RESUMO

The proteostasis network includes all the factors that control the function of proteins in their native state and minimize their non-functional or harmful reactions. The molecular chaperones, the important mediator in the proteostasis network can be considered as any protein that contributes to proper folding and assembly of other macromolecules, through maturating of unfolded or partially folded macromolecules, refolding of stress-denatured proteins, and modifying oligomeric assembly, otherwise it leads to their proteolytic degradation. Viruses that use the hosts' gene expression tools and protein synthesis apparatus to survive and replicate, are obviously protected by such a host chaperone system. This means that many viruses use members of the hosts' chaperoning system to infect the target cells, replicate, and spread. During viral infection, increase in endoplasmic reticulum (ER) stress due to high expression of viral proteins enhances the level of heat shock proteins (HSPs) and induces cell apoptosis or necrosis. Indeed, evidence suggests that ER stress and the induction of unfolded protein response (UPR) may be a major aspect of the corona-host virus interaction. In addition, several clinical reports have confirmed the autoimmune phenomena in COVID-19-patients, and a strong association between this autoimmunity and severe SARS-CoV-2 infection. Part of such autoimmunity is due to shared epitopes among the virus and host. This article reviews the proteostasis network and its relationship to the immune system in SARS-CoV-2 infection.

11.
J Cell Physiol ; 235(2): 880-890, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31256424

RESUMO

Sirtuin1 (SIRT1) is a crucial regulator of metabolism and it is implicated in the metabolic pathophysiology of several disorders inclusive of Type 2 diabetes and fatty liver disease (NAFLD). The aim of this study was to investigate the role of miR-141 in hepatic steatosis via regulation of SIRT1/AMP-activated protein kinase (AMPK) pathway in hepatocytes. Liver hepatocellular cells (HepG2) were treated with high concentration of glucose to be subsequently used for the assessment of miR-141 and SIRT1 levels in a model of hepatic steatosis. On the other hand, cells were transfected with miR-141 to investigate its effect on hepatocyte steatosis and viability as well as SIRT1 expression and activity along with AMPK phosphorylation. Targeting of SIRT1 by miR-141 was evaluated by bioinformatics tools and confirmed by luciferase reporter assay. Following the intracellular accumulation of lipids in HepG2 cells, the level of miR-141 was increased while SIRT1 mRNA and protein levels, as well as AMPK phosphorylation, was decreased. Transfection with miR-141 mimic significantly downregulated SIRT1 expression and activity while miR-141 inhibitor had the opposite effects. Additionally, modulation of miR-141 levels significantly influenced AMPK phosphorylation status. The results of luciferase reporter assay verified SIRT1 to be directly targeted by miR-141. miR-141 could effectively suppress SIRT1 and lead to decreased AMPK phosphorylation in HepG2 cells. Thus, miR-141/SIRT1/AMPK signaling pathway may be considered a potential target for the therapeutic management of NAFLD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 1/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipídeos/análise , Fígado/patologia , Obesidade/patologia
12.
Gene ; 711: 143939, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31220581

RESUMO

Sirtuin 1 is one of the regulators of cell growth and survival and its inhibition is suggested as a suitable mechanism to overcome breast cancer development. In this study we explored the role of miR-211-5p in SIRT1/p53 pathway and its influence on breast cancer cell viability and apoptosis. Cells were transfected with miR-211-5p mimic and inhibitor to modulate cellular miR-211-5p levels in breast cancer cell lines, MDA-MB-231 and MCF-7. Gene expression of miR-211-5p and SIRT1 were measured with real-time PCR. SIRT1 protein level and the acetylation of p53 as well as SIRT1 activity were evaluated by Western blotting and fluorometry, respectively. In order to explore the direct attachment of miR-211-5p to the 3'-UTR of SIRT1 mRNA, luciferase reporter assay was applied. Cell viability in response to miR-211-5p was studied by MTT assay and apoptosis was assessed by annexin V labeling followed by flow cytometry. Results showed that SIRT1 gene and protein expression were inhibited by miR-211-5p and the 3'-UTR of SIRT1 was found to be directly targeted by miR-211-5p. Inhibition of SIRT1 expression resulted in its reduced activity. Up-regulation of miR-211-5p was also followed by a significant decline in the acetylation status of p53 which was associated with remarkable decreased cell viability and induction of apoptosis in breast cancer cells. Antisense oligonucleotide of miR-211-5p acted as its inhibitor and exerted opposite effects both on SIRT1 expression and cell apoptosis. In conclusion, inhibition of SIRT1 by miR-211-5p could effectively reduce breast cancer cell survival and cause cell death and therefore might be considered a seemly mechanism for designing anticancer therapies.


Assuntos
Neoplasias da Mama/metabolismo , MicroRNAs/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regiões 3' não Traduzidas , Acetilação , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7
13.
J Cell Biochem ; 120(6): 9356-9368, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520099

RESUMO

Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.


Assuntos
Neoplasias da Mama/genética , MicroRNAs/genética , Sirtuína 1/genética , Proteína Supressora de Tumor p53/genética , Apoptose/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais/genética
14.
Gene ; 673: 149-158, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-29886033

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme for all living cells. Nicotinamide phosphoribosyltransferase (NAMPT) functions as a key enzyme in the salvage pathway of NAD biosynthesis. Cancer cells have higher rate of NAD consumption and therefore NAMPT is essential for their survival. Thus, we investigated the effect of NAMPT inhibition by miR-206 on breast cancer cell survival. Breast cancer cells were transfected with miR-206 mimic, inhibitor and their negative controls. NAMPT levels were assessed by real-time PCR as well as western blotting. Cell survival assay and quantification of NAD level were performed by using colorimetric methods. Apoptosis assay was performed by labeling cells with Annexin V-FITC and propidium iodide followed by the flow cytometric analysis. Bioinformatics analysis was done to assess whether NAMPT 3'-UTR is a direct target of miR-206 and the results were confirmed by the luciferase reporter assay. NAMPT 3'-UTR was shown to be a direct target of miR-206. miR-206 reduced NAMPT expression at the protein level, leading to a significant decrease in the intracellular NAD level and subsequent decline in cell survival and induction of apoptosis. Targeting of NAMPT-mediated NAD salvage pathway by miR-206 might provide a new insight in the possible molecular mechanism of breast cancer cell growth regulation. This pathway might provide a new approach for breast cancer therapy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Citocinas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Regiões 3' não Traduzidas , Apoptose , Western Blotting , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Luciferases/metabolismo , Células MCF-7 , MicroRNAs/genética
15.
Environ Sci Pollut Res Int ; 25(2): 1800-1808, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29101705

RESUMO

Given the importance of assessing potential toxicity of heavy metals in valuable species of aquatic animals, the goal of the present research was to assess the sub-acute effects of copper oxide on hematological, enzymological, and oxidative stress responses of gray mullet to measure toxicity of copper oxide pollution in this significant fish. The median lethal concentration (LC50) value of copper oxide to gray mullet was detected at 3.15 ± 0.039 mg/L for 96 h, and 25 and 50% of the 96-h LC50 values were selected as sub-acute concentrations. The fish were exposed to (0.79 and 1.57 mg/L) copper oxide for 21 days. At the end of 21 days, the results showed that hemoglobin (Hb), hematocrit (Hct), red blood cells (RBC) count, MCV, MCH, and MCHC levels were found to be decreased in copper oxide treated fish, whereas white blood cells (WBC) count increased in copper-treated fish. Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activity increased in treated groups; however, copper oxide in both groups of sub-acute exposure significantly decreased plasma alkaline phosphatase (ALP) activity compared to the control group. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels significantly declined in copper oxide-treated fish. These findings indicated the deleterious effects of copper oxide on gray mullet, even at low concentrations, and offered that hematological and hepatic enzyme activity and antioxidants are suitable tools for evaluating heavy metals toxicity.


Assuntos
Cobre/toxicidade , Exposição Ambiental , Fígado/efeitos dos fármacos , Fígado/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Smegmamorpha/sangue , Smegmamorpha/metabolismo , Animais , Antioxidantes/análise , Biomarcadores/análise , Enzimas/metabolismo , Dose Letal Mediana , Alimentos Marinhos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA